
HAL Id: hal-00531583
https://u-bourgogne.hal.science/hal-00531583v1

Submitted on 3 Nov 2010 (v1), last revised 20 Feb 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Packing Colorings of Distance Graphs
Olivier Togni

To cite this version:
Olivier Togni. On Packing Colorings of Distance Graphs. Discrete Applied Mathematics, 2013,
pp.Available online. �10.1016/j.dam.2013.10.026�. �hal-00531583v1�

https://u-bourgogne.hal.science/hal-00531583v1
https://hal.archives-ouvertes.fr


On Packing Colorings of Distance Graphs

Olivier Togni

LE2I, UMR CNRS 5158
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Abstract

The packing chromatic number χρ(G) of a graph G is the least integer k for which
there exists a mapping f from V (G) to {1, 2, . . . , k} such that any two vertices of color i
are at distance at least i+1. This paper studies the packing chromatic number of infinite
distance graphs G(Z, D), i.e. graphs with the set Z of integers as vertex set, with two
distinct vertices i, j ∈ Z being adjacent if and only if |i − j| ∈ D. We present lower and
upper bounds for χρ(G(Z, D)), showing that for finite D, the packing chromatic number is
finite. Our main result concerns distance graphs with D = {1, t} for which we prove some
upper bounds on their packing chromatic numbers, the smaller ones being for t ≥ 447:
χρ(G(Z, {1, t})) ≤ 40 if t is odd and χρ(G(Z, {1, t})) ≤ 81 if t is even.

Keywords: graph coloring; packing chromatic number; distance graph.

1 Introduction

Let G be a connected graph and let k be an integer, k ≥ 1. A packing k-coloring of a graph G
is a mapping f from V (G) to {1, 2, . . . , k} such that any two vertices of color i are at distance
at least i+1 (thus vertices of color i form an i-packing of G). The packing chromatic number

χρ(G) of G is the smallest integer k for which G has a packing k-coloring.
This parameter was introduced recently by Goddard et al. [9] under the name of broadcast

chromatic number and the authors showed that deciding whether χρ(G) ≤ 4 is NP-hard. Fiala
and Golovach [6] showed that the problem remains NP-complete for trees. Brešar et al. [2]
studied the problem on Cartesian products graphs, hexagonal lattice and trees, using the
name of packing chromatic number. Other studies on this parameter mainly concern infinite
graphs, with a natural question to be answered : is a given infinite graph has finite packing

chromatic number ? Goddard et al. answered by the positive for the infinite two dimensional
square grid by showing 9 ≤ χρ ≤ 23. The lower bound was later improved to 10 by Fiala et
al. [7] and then to 12 by Ekstein et al. [5]. The upper bound was recently improved by Holub
and Soukal [13] to 17. Fiala et al. [7] showed that the infinite hexagonal grid has packing
chromatic number 7; while the infinite triangular lattice along with the 3-dimensional square
lattice was shown to admit no finite packing coloring by Finbow and Rall [8]. Infinite product
graphs were considered by Fiala et al. [7] that showed that the product of a finite path (of
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order at least two) by the 2-dimensional square grid has infinite packing chromatic number
while the product of the infinite path by any finite graph has finite packing chromatic number.

The (infinite) distance graph G(Z,D) with distance set D = {d1, d2, . . . , dk}, where di
being positive integers, has the set Z of integers as vertex set, with two distinct vertices
i, j ∈ Z being adjacent if and only if |i − j| ∈ D. The finite distance graph Gn(D) is the
subgraph of G(Z,D) induced by vertices 0, 1, . . . , n − 1. An edge between vertices a and
a+ di will be called a di-edge.

The study of distance graphs was initiated by Eggleton et al. [3]. A large amount of work
has focused on colorings of distance graphs [4, 16, 1, 11, 12, 14], but other parameters have
also been studied on distance graphs, like the feedback vertex set problem [10].

The aim of this paper is to study the packing chromatic number of infinite distance graphs,
with particular emphasis on the case D = {1, t}. In section 2, we bound the packing chro-
matic number of the infinite path power (i.e. infinite distance graph with D = {1, 2, . . . , t}).
Section 3 concerns packing colorings of distance graphs with D = {1, t}, for which we prove
some lower and upper bounds on the number of colors (see Proposition 1). Exact or sharp re-
sults for the packing chromatic number of some other 4-regular distance graphs are presented
in Section 4. Section 5 concludes the paper with some remarks and open questions.

Our results about the packing chromatic number of G(Z,D) for some small values of D
(from Sections 2 and 4) are summarized in Table 1. The source code (C++) of the program
used to obtain most of the lower bounds and some upper bounds along with long sequences
of colors not given in this paper can be found at [15].

D χρ ≥ χρ ≤ period

1, 2 8∗ 8 54

1, 3 9∗ 9 32

1, 4 11 16 320

1, 5 10∗ 12 1028

1, 6 11∗ 23 1917

1, 7 10∗ 15 640

1, 8 11∗ 25 5184

1, 9 10∗ 18 576

1, 2, 3 19 23 768

2, 3 11 13 240

2, 4 8∗ 8 54

2, 5 14 23 336

2, 6 9∗ 9 32

Table 1: Lower and upper bounds for the packing chromatic number of G(Z,D) for different
values of D. In the fourth column are the periods of the colorings giving the upper bounds.
(∗: bound obtained by a computer search).

The bounds of Section 3 are summarized in the following Proposition:

2



Proposition 1.

χρ(G(Z, {1, t})) ≤































86, t = 2q + 1, q ≥ 36
40, t = 2q + 1, q ≥ 223
173, t = 2q, q ≥ 87
81, t = 2q, q ≥ 224
29, t = 96q ± 1, q ≥ 1
59, t = 96q + 1± 1, q ≥ 1

2 Path Powers

Let Dt = G(Z, {1, 2, . . . , t}) be the tth power of the two-ways infinite path and let P t
n =

Gn({1, 2, . . . , t}) be the tth power of the path Pn on n vertices.
We first present an asymptotic result on the packing chromatic number:

Proposition 2. χρ(D
t) = (1 + o(1))3t and χρ(D

t) = Ω(et).

Proof. Dt is a spanning subgraph of the lexicographic product Z ◦Kt (see Figure 1). Then,
as Goddard et al. [9] showed that χρ(Z ◦Kt) = (1 + o(1))3t, the same upper bound holds for
Dt. To prove the lower bound, since two vertices of color i have to be it + 1 apart, then for
any packing coloring of Dt using at most c colors, c must satisfy:

c
∑

i=1

1

it+ 1
≥ 1.

Since
c

∑

i=1

1

it+ 1
<

c
∑

i=1

1

it
=

1

t

c
∑

i=1

1

i
=

Hc

t
,

where Hn is the nth harmonic number and since Hn = Ω(ln(n)), then Hc

t
≥ 1 implies

c = Ω(et).

Figure 1: The infinite distance graph D3 as a subgraph of the lexicographic product Z ◦K3.

Corollary 1. For any finite subset D of N, the packing chromatic number of G(Z,D) is

finite.
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For very small t, exact values or sharp bounds for the packing chromatic number can be
calculated:

Proposition 3.

χρ(D
2) = 8.

Proof. A periodic packing coloring of period 54 using 8 colors is given by the following se-
quence of length 54 :

8, 1, 2, 6, 1, 4, 3, 2, 1, 5, 7, 1, 2, 3, 4, 1, 6, 2, 1, 8, 3, 1, 2, 4, 1, 5, 7,
1, 3, 2, 1, 6, 4, 1, 2, 3, 1, 8, 5, 1, 2, 4, 1, 3, 6, 1, 2, 7, 1, 5, 4, 2, 1, 3.

One can check that the distance (considered cyclically) between two occurrences of a color i
in this sequence is at least 2i+ 1, hence this coloring is a packing coloring of D2.

Moreover, by checking all cases with the help of a computer, we find that 7 colors are not
sufficient for a packing coloring of P 2

26.

Proposition 4.

19 ≤ χρ(D
3) ≤ 23.

Proof. The upper bound comes from a coloring of period 768 using 23 colors described by the
sequence of length 768 of Appendix B1.

To prove the lower bound, we consider the maximum density ρi of a color i in a packing
coloring of D3. As d(j, k) = ⌈k−j

3
⌉, then ρi =

1

3i+1
. However, for the colors 1 and 2, we show

that only at most 10 over 28 consecutive vertices of D3 can be colored with these colors: at
most 28/4 = 7 vertices can be colored 1 and at most 28/7 = 4 vertices can be colored 2, but
as lcm(4, 7) = 28, we have to choose between color 1 and color 2 for at least one vertex, thus
at most 7 + 4− 1 = 10 vertices can be colored 1 or 2. Then, an easy computation gives that
χρ(D

3) ≥ min{c, 10

28
+

∑c
i=3

1

3i+1
≥ 1} = 19.

3 Distance graphs with D = {1, t}

Let D(a, b) = G(Z, {a, b}) be the infinite distance graph with chord lengths a and b. Let also
Dn(a, b) = Gn({a, b}).

The case a = 1 and b = 2 was discussed in the previous section, so we now consider D(1, t)
with t ≥ 3.

The general method we shall use will be to cut the graph into blocks Bi of size s = t−1 or
s = t+ 1, depending on the value of t and to color each block by a predefined color pattern.
Figure 2 illustrate the grid-like structure of D(1, t).

Let s = t± 1 and let Bi = {is, is+1, . . . , (i+1)s− 1}. Then D(1, t) = ∪+∞
i=−∞Bi. Remark

that if t = 4p− 1 = s− 1, then each Bi is an induced cycle of D(1, t) of length s = t+1 = 4p
(see Figure 2). By a color pattern P , we mean a sequence of s colors (c1, c2, . . . , cs) (that will
be associated to a block Bi). If S is a sequence of integers, Sp is the sequence obtained by
repeating p times S.

We first need to know the distance between two vertices in D(1, t).

Lemma 1. The distance between two vertices a and b of D(1, t) is d(a, b) = min(q + r, q +
1 + t− r), where |b− a| = qt+ r, with 0 ≤ r < t.
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B1

B0

s = |Bi| = t+ 1

B2

B3

s = |Bi| = t− 1

B0

B1

B2

B3

s = |Bi| = t

B3

B2

B1

B0

Figure 2: Three block-representations of D(1, t)

Proof. Assume w.l.o.g. that b ≥ a. Any minimal path between a and b uses either q t-edges
and r 1-edges or q + 1 t-edges and t− r 1-edges.

The key Lemma of our method is the following which indicates when a color of a pattern
can be re-used on another pattern.

Lemma 2. Let t = 4p− 1 or 4p, s = t+1 and let P , P ′ be two color patterns containing the

color m < t at the same places and no common color greater than m. If P lies on block Bi

of D(1, t), then P ′ can be placed on block Bj whenever |j − i| > m
2
.

Proof. Assume without loss of generality that i = 0. Let m be a color (an integer) lying on
block B0 (perhaps in several places) and on block Bj (and not on blocks Bh, 0 < h < j). Let
a1, a2, . . . , ad be the positions of the occurrences of color m in B0 and let b1, b2, . . . , bd be the
positions of the occurrences of color m in Bj. Then bk = ak + js.

We are going to show that for any 1 ≤ k, ℓ ≤ d, we have d(ak, bℓ) > m whenever j > m
2
.

For this, we distinguish two cases depending on the values of k and ℓ.

Case 1. k = ℓ. Then bℓ − ak = js = jt + j. Hence, by virtue of Lemma 1, d(ak, bℓ) =
min(j + j, j + 1 + t− j) = min(2j, t + 1) > m as soon as 2j > m, i.e. j > m

2
.

Case 2. k 6= ℓ. Let δb = |bℓ − bk|. Then, as the coloring is a packing coloring of Bj (which
is a cycle of length t+ 1), we have

(ℓ− k)m < δb < t−m+ 1 (1)

Subcase 2.1. k < ℓ. Then bℓ − ak = jt+ j + δb.
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If j + δb < t, then bℓ − ak = jt+ j + δb. Hence, Lemma 1 gives d(ak, bℓ) = min(j + j +
δb, j + 1 + t− j − δb) = min(2j + δb, t+ 1− δb) > m since j > m

2
and t+ 1− δb > m by

(1).

If j + δb ≥ t, then bℓ − ak = (j + 1)t + (j + δb − t). Hence, Lemma 1 gives d(ak, bℓ) =
min(j +1+ j+ δb − t, j +2+ t− j − δb + t) = min(2j +1+ δb − t, 2t+2− δb) > m since
2j+1+δb− t = j+1+ j+δb− t ≥ j+1 ≥ t−δb+1 > m and 2t+2−δb ≥ t+2 > m+2.

Subcase 2.2. k > ℓ. Then bℓ − ak = js − (bk − bℓ) = jt+ j − δb.

If δb < j, then bℓ−ak = jt+(j−δb). Hence, Lemma 1 gives d(ak, bℓ) = min(j+j−δb, j+
1 + t− j + δb) = min(2j − δb, t+ 1 + δb) > m since j ≥ δb > m and t+ 1 + δb > t > m.

If δb > j, then bℓ − ak = (j − 1)t + (t + j − δb). Hence, Lemma 1 gives d(ak, bℓ) =
min(j − 1 + t + j − δb, j + t − t − j + δb) = min(2j + t − 1 − δb, δb) > m since by (1),
t− δb > m− 1 and δb > m.

See Figure 3 for an illustration when t = 7.

B0

B1

B2

B3

1

1 1 1

2 1 3 1 2 1 3

31232

Figure 3: Two shortest paths in D(1, 7) between a vertex colored 3 in block B0 and two
other vertices colored 3 in B2.

The next result shows that a packing coloring of D(1, t) by patterns that satisfies condi-
tions of Lemma 1 is also a packing coloring of D(1, t+ 2).

Lemma 3. for t = 4p− 1 or 4p, any pattern packing coloring of D(1, t) is a packing coloring

of D(1, t+ 2).

Proof. Let t = 4p − 1 (resp. 4p) and f be a pattern packing coloring of D(1, 4p − 1) (resp.
D(1, 4p)). Assume D(1, 4p + 1) (resp. D(1, 4p + 2)) is now colored by f . Fix t′ = t + 2.
Then we have to check the two cases of the proof of Lemma 2 with m < t = t′ − 2 (and
s = t+ 1 = t′ − 1).

Case 1. k = ℓ. Then bℓ − ak = js = jt′ − j = (j − 1)t′ + t′ − j. Hence d(ak, bℓ) =
min(j − 1 + t′ − j, j + t′ − t′ + j) = min(t′ − 1, 2j) > m since m < t′ − 2 and 2j > m.
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Case 2. k 6= ℓ. Let δb = |bℓ − bk|. Since t = t′ − 2, then Equation (1) now becomes

(ℓ− k)m < δb < t′ −m− 1 (2)

Subcase 2.1. k < ℓ. Then bℓ − ak = jt′ − j + δb.

If δb − j ≥ 0, then we have d(ak, bℓ) = min(j − j + δb, j +1+ t′ + j − δb) = min(δb, 2j +
1 + t′ − δb) > m since δb > m and t′ − δb > m+ 1 by (2).

If δb − j < 0, then j > δb > m. In that case, we have bℓ − ak = (j − 1)t′ + (t′ − j + δb)
and d(ak, bℓ) = min(j− 1+ t′ − j+ δb, j+ t′− t′ + j− δb) = min(t′− 1+ δb, 2j − δb) > m
since by hypothesis, j > δb > m.

Subcase 2.2. k > ℓ. Then bℓ − ak = js − δb = jt′ − j − δb.

If j + δb ≤ t′, then bℓ − ak = (j − 1)t′ + (t′ − j − δb) and d(ak, bℓ) = min(j − 1 + t′ − j −
δb, j + t′ − t′ + j + δb) = min(t′ − 1− δb, 2j + δb) > m since t′ − 1− δb > m by (2).

If j+δb > t′, as δb < t′−m−1, then j > m+1. We have bℓ−ak = (j−2)t′+(2t′−j−δb) and
d(ak, bℓ) = min(j−2+2t′−j−δb, j−1+t′−2t′+j+δb) = min(2t′−2−δb, 2j−t′−1+δb) > m
since 2j − t′ − 1 + δb = j + δb − t′ + j − 1 and j − 1 > m in that case.

See Figure 4 for an illustration when t = 9.

231213

211213

B0

B1

B2

B3

13

1 1

Figure 4: Two shortest paths in D(1, 9) between a vertex colored 3 in block B0 and two
other vertices colored 3 in B2.

3.1 D(1, t) with odd t

We now present a construction to obtain a packing coloring of D(1, t) for t ≡ ±1 mod 96,
with at most 29 colors. To prove this inequality, we shall construct a packing coloring by
defining a set of color patterns that will be used cyclically to color the blocks of D(1, t).

Proposition 5. For t ≡ −1 mod 96 or t ≡ 1 mod 96,

χρ(D(1, t)) ≤ 29.
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Proof. Let s = 96q for some q ≥ 1 and t = 96q ± 1. We use the following color patterns:
P1 = (1, 2, 1, 3)24q

P2 = (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)8q

P ′
2 = (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11)8q

P3 = (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15)6q

P ′
3 = (1, 6, 1, 7, 1, 16, 1, 17, 1, 6, 1, 7, 1, 18, 1, 19, 1, 6, 1, 7, 1, 20, 1, 21)4q

P ′′
3 = (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27, 1, 6, 1, 7, 1, 28, 1, 29)3q

Then, a packing coloring of D(1, t) using these patterns is constructed by assigning in-
ductively to 16 consecutive blocks Bi the pattern

P = (P1, P2, P1, P3, P1, P
′
2, P1, P

′
3, P1, P2, P1, P3, P1, P

′
2, P1, P

′′
3 ).

By virtue of Lemmas 1 and 2, we only have to show that color patterns with common
colors are separated enough in P: the distance (considered cyclically) between two patterns
P and P ′ with a maximum common color m in P has to be greater than m

2
. It is easily seen

that this is effectively the case, as indicated in the following table:
Patterns Cyclic distance Max common color

P1, P1 2 3

P2, P2 8 9

P ′
2, P

′
2 8 11

P2, P
′
2 4 5

P3, P3 8 15

P ′
3, P

′
3 16 21

P ′′
3 , P

′′
3 16 29

P3, P
′
3 4 7

P3, P
′′
3 8 7

P ′
3, P

′′
3 4 7

Hence, the coloring is a packing coloring of D(1, t) with 29 colors.

We now generalize this method to color any distance graph D(1, t) with sufficiently large
odd t.

Proposition 6. For any odd t ≥ 73,

χρ(D(1, t)) ≤ 86.

Proof. The method we are going to use to define a packing coloring of D(1, t) with at most 86
colors (the exact number of colors used will vary between 31 and 86, depending on the residue
of s modulo 48) is similar with the one of proof of Proposition 5: D(1, t) will be colored by
the pattern (of color patterns) P = (P1, P2, P1, P3, P1, P

′
2, P1, P

′
3, P1, P2, P1, P3, P1, P

′
2, P1, P

′′
3 )

defined in proof of Proposition 5, where the Pi, P
′
i and P ′′

i will be defined depending on the
residue of s modulo 48.

Our base case is s ≡ 0 mod 48, i.e. t = 48q ± 1, for which we use the following color
patterns (which are similar with the color patterns for t = 96q ± 1, except for P ′′

3 ):
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P1 (1, 2, 1, 3)12q

P2 (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)4q

P ′
2 (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11)4q

P3 (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15)3q

P ′
3 (1, 6, 1, 7, 1, 16, 1, 17, 1, 6, 1, 7, 1, 18, 1, 19, 1, 6, 1, 7, 1, 20, 1, 21)2q

P ′′
3 (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27,

1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 28, 1, 29, 1, 6, 1, 7, 1, 30, 1, 31)q

Now, for s ≡ 4 mod 48 with q ≥ 2, we are going to modify the above patterns by adding
some new colors (from 32 to 58) at the end of the patterns, as indicated in the following table:

P1 (1, 2, 1, 3)12q , 1, 2, 1, 3

P2 (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)4q , 1,
{

32

33

34

, 1,
{

35

36

37

P ′
2 (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11)4q , 1,

{

38

39

40

, 1,
{

41

42

43

P3 (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15)3q , 1,
{

44

45

46

, 1,

{

47

48

49

50

P ′
3 (1, 6, 1, 7, 1, 16, 1, 17, . . . , 1, 6, 1, 7, 1, 20, 1, 21)2q , 1,

{

51

52
, 1,

{

53

54

P ′′
3 (1, 6, 1, 7, 1, 22, 1, 23, . . . , 1, 6, 1, 7, 1, 30, 1, 31)q , 1,

{

55

56
, 1,

{

57

58

For instance for P2, two new colors from {32, 33, . . . , 37} are used in turn, i.e. the last four
integers of successive occurrences of P2 will be 1, 32, 1, 35; 1, 33, 1, 36; 1, 34, 1, 37; 1, 32, 1, 35;
. . .. As the period of the pattern P2 in the coloring is 8, then two patterns ending, say, by
1, 34, 1, 37 will be repeated each 24 patterns and thus Lemma 2 asserts that two occurrences
of the color 34 are separated quite enough and the same goes for the color 37.

As can be seen, seven new colors are used for P3, since if only six new colors were used, the
patterns containing the color 48 (or 49) will be repeated each 24 times, but it is not sufficient
to ensure that vertices colored by 48 (or 49) are separated quite enough. Then, the last four
integers of successive occurrences of P3 will be 1, 42, 1, 47; 1, 43, 1, 48; 1, 44, 1, 49; 1, 42, 1, 50;
1, 43, 1, 47, ... Therefore, two occurrences of P3 will end by the same four colors each 12 times
and will end by the same color (from {47, 48, 49, 50}) each 4 times (hence each 32 sequences).
With Lemma 2, we know that it will not cause any conflict if the colors used are less than
32 ∗ 2 = 64.

For the other residues of s modulo 48 (with q ≥ 2 if s mod 48 < 24), the added colors (to
the base case s ≡ 0 mod 48) are given in the four tables of Appendix A (without the 1s, for
sake of brevity). Notice also that for the case s ≡ 24 mod 48, the colors 22 and 23 are reused
to complete the pattern P ′′

3 .

As the next Proposition shows, increasing the minimum value of t allows to shorten the
number of colors for a packing coloring of D(1, t).

Proposition 7. For any odd t ≥ 447,

χρ(D(1, t)) ≤ 40.

Proof. The main idea to obtain a packing coloring of D(1, t) is to modify the coloring of
D(1, t) for s ≡ 0 mod 96 given in Proof of Proposition 5 by adding only one new color αi to
each block Bi. In order to do that, depending on the value of s, αi must be placed in several
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(quasi evenly distributed) positions in block Bi. The conditions for the coloring to remain
a packing coloring are i) that vertices of Bi colored αi have to be (cyclically) distant quite
enough and that ii) the color αi is not reused in another block Bj with |j− i| ≤ αi

2
(necessary

condition for Lemma 2).
Color patterns are modified in this way:

P1 = (1, 2, 1, 3)q1 , s = 4q1

P2 = (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)q2 (1,
{

32

33

34

)r2 , s = 12q2 + 2r2, 0 ≤ r2 ≤ 4

P ′
2 = (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11)q2 (1,

{

35

36

37

)r2 , s = 12q2 + 2r2, 0 ≤ r2 ≤ 4

P3 = (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15)q3 (1,
{

38

39

40

)r3 , s = 16q3 + 2r3, 0 ≤ r3 ≤ 6

P ′
3 = (1, 6, 1, 7, 1, 16, 1, 17, . . . , 1, 6, 1, 7, 1, 20, 1, 21)q4 (1, 30)r4 , s = 24q4 + 2r4, 0 ≤ r4 ≤ 10

P ′′
3 = (1, 6, 1, 7, 1, 22, 1, 23, . . . , 1, 6, 1, 7, 1, 28, 1, 29)q5 (1, 31)r5 , s = 32q5 + 2r5, 0 ≤ r5 ≤ 14,

where S (1, α)r is a sequence obtained by inserting r quasi evenly cyclically distributed
occurrences of the pair (1, α) in the sequence S (insertions are possible only after a color > 1,
in order to keep the sequence alternate between color 1 and other colors).

For example, (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)3 (1, α)5 can be rewritten as
(1, 4, 1, 5, 1, 8, 1, α,1, 4, 1, 5, 1, 9, 1, α,1, 4, 1, 5, 1, 8, 1, 4, 1, α,1, 5, 1, 9, 1, 4, 1, 5, 1, α,1, 8, 1, 4, 1, 5, 1, 9, 1, α).

In order to satisfy Condition i) and as the pairs (1, α) have to be inserted only on even

positions, we must have 2⌊⌊ |S|
r
⌋/2⌋ ≥ α. Hence the worst case for this separation constraint is

for the color 31 in P ′′
3 when r5 = 14: one can insert 14 occurrences of (1, 31) if 2⌊⌊32q5

14
⌋/2⌋ ≥

31, which is true as soon as q5 = 14 and thus s = 448.
Moreover, it can be seen that the added color in each pattern is chosen in such a way

that Condition ii) is satisfied. For P2, colors 32, 33 and 34 will be used in turn (i.e. the first
block colored by P2 will use color 32, the second 33, the third 34 and so on... And the same
goes for P ′

2 and P3. The patterns P ′
3 (P ′′

3 , respectively) are distant quite enough in P to use
always the same new color (30 and 31, respectively).

Remark that the above method can produce a packing coloring using less than 40 colors,
depending on the value of s (i.e. if some ri are equal to zero). Notice also that combining the
methods of Proposition 6 and 7 allows to define a packing coloring for 95 ≤ t ≤ 447 using a
number of colors lying between 40 and 86.

3.2 D(1, t) with even t

In this subsection, we adapt the method of the previous subsection to obtain upper bounds
for the packing chromatic number of D(1, t) when t is even. Although the main idea is the
same, it is more complicated (and much more colors are needed) than for the odd case because
of the fact that one cannot alternate between color one and other colors too many times (at
most t/2 times).

The distance graph D(1, t), with t = 4p or 4p + 2 is cut in blocks B0, B1, . . . of size
s = 4p+1 and new color patterns are constructed by inserting a new color at the end of each
pattern (of length s′ = s− 1) of Proofs of Propositions 5, 6 and 7.

Proposition 8. For any even t,

• if t ≥ 174, then χρ(D(1, t)) ≤ 173;
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• if t ≥ 448, then χρ(D(1, t)) ≤ 81;

• if t ≡ 0 or 2 mod 96, then χρ(D(1, t)) ≤ 59.

Proof. By Lemmas 2 and 3 and by Propositions 5, 6 and 7, it remains to add the missing
color in each color pattern. This problem is equivalent to the one of coloring the infinite path
P∞ with colors from {k1, k1 + 1, . . . , k2} such that vertices of color i are at distance greater
than i

2
(and with t > k2).

We are going to show, by induction on k1, that k2 ≤ 2k1 − 1. For k1 = 2, vertices can be
colored by alternating color 2 and color 3, so k2 = 3. Assume that P∞ can be colored with
colors from {k1, k1 +1, . . . , k2 ≤ 2k1 − 1} and let k′1 = k1 +1. Replace now color k1 by colors
k2+1 and k2+2 alternatively. Then the maximum color used is k′2 = k2+2 ≤ 2k1+1 = 2k′1−1
and the constraint is satisfied since if vertices x and y are colored k2 + 2 then their mutual
distance satisfies d(x, y) > 2k1

2
≥ k2+1

2
> k2

2
.

As the colorings defined in Proof of Proposition 6 (Propositions 7 and 5, respectively) use
at most 86 (40 and 29, respectively) colors, then we obtain a packing coloring of D(1, 2t) with
at most 2× 87 − 1 = 173 colors (81 and 59, respectively).

In fact, it seems that less than 2k1−1 colors are enough for such a coloring. When k1 = 87,
a computation gives k2 = 152 for such a coloring; when k1 = 41, we find k2 = 71 and when
k1 = 30, we find k2 = 53.

4 D(a, b) with small a and b

Results of Section 3 do not apply for D(1, t) with small t, however it is possible to derive
exact or sharp results for such graphs, using ad-hoc methods.

Proposition 9.

χρ(D(1, 3)) = 9.

Proof. first, remark that the graph-distance d(i, j) between vertex i and vertex j ≥ i is
d(i, j) = ⌊ j−i

3
⌋+ (j − i) mod 3.

A 13-packing coloring of D(1, 3) of period 32 is given by the following sequence:
1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 8, 1, 9.

It is routine to check that vertices of a same color are distant quite enough.
Again, with the help of a computer, we find that 8 colors are not sufficient for a packing

coloring of D100(1, 3).

Proposition 10.

11 ≤ χρ(D(1, 4)) ≤ 16;

10 ≤ χρ(D(1, 5)) ≤ 12;

11 ≤ χρ(D(1, 6)) ≤ 23;

10 ≤ χρ(D(1, 7)) ≤ 15;

11 ≤ χρ(D(1, 8)) ≤ 25;

10 ≤ χρ(D(1, 9)) ≤ 18.
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Proof. For D(1, 4), the lower bound is obtained by calculating the maximum density ρi of a
color i: it can be seen that ρ1 =

2

5
and ρi =

1

4i−2
for i ≥ 2 and that min{c, 2

5
+

∑c
i=2

1

4i−2
≥

1} = 11. For the upper bound, a 16-packing coloring of period 320 is given in Appendix B2.
For D(1, 5), the computer tells us that there exists no 9-packing coloring of D45(1, 5) and

a 12-packing coloring of period 1028 is given in [15].
Similarly, for D(1, 6), there exists no 10-packing coloring of D45(1, 6) and a 23-packing

coloring of period 1917 is given in [15]. For D(1, 7), there exists no 9-packing coloring of
D45(1, 7) and a 15-packing coloring of period 640 is given in [15]. For D(1, 8), there exists no
10-packing coloring of D45(1, 8) and a 25-packing coloring of period 5184 is given in [15]. For
D(1, 9), there exists no 9-packing coloring of D45(1, 7) and a 18-packing coloring of period
576 is given in [15].

It is interesting to notice that sometimes adding just one more color allows to shorten
considerably the period of the packing coloring, as can be seen with D(1, 5) with the following
periodic 13-packing coloring of period 80 (compared with the 12-packing coloring of period
1028):
1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 10, 1, 4, 1, 2, 1, 3, 1, 5, 1, 11, 1, 2, 1, 3, 1, 8, 1, 9,
1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 12, 1, 4, 1, 2, 1, 3, 1, 5, 1, 13, 1, 2, 1, 3, 1, 9, 1, 8.

We now turn our attention on other distance graphs with two chords, i.e. graphs of
type D(a, b), with 2 ≤ a ≤ b. The smallest example is D(2, 3) which is a subgraph of
D(1, 2, 3) = P 3

∞, thus χρ(D(2, 3)) ≤ χρ(P
3
∞) ≤ 23. In fact, we show that the upper bound is

much less than 22:

Proposition 11.

11 ≤ χρ(D(2, 3)) ≤ 13;

χρ(D(2, 4)) = 8;

14 ≤ χρ(D(2, 5)) ≤ 23;

χρ(D(2, 6)) = 9.

Proof. The graph D(2, 4) (D(2, 6), respectively) is not connected and consists in two copies
of D(1, 2) (D(1, 3), respectively). Thus χρ(D(2, 4)) = χρ(D(1, 2)) = 8 and χρ(D(2, 6)) =
χρ(D(1, 3)) = 9.

The lower bound 11 ≤ χρ(D(2, 3)) is obtained by calculating the maximum density ρi of
a color i: it can be seen that ρ1 =

2

5
and ρi =

1

3i+1
for i ≥ 2 and that min{c, 2

5
+
∑c

i=2
1

3i+1
≥

1} = 11.
For the lower bound 14 ≤ χρ(D(2, 5)), it can be seen that ρ1 =

3

7
and ρi =

1

5i−4
for i ≥ 2

and that min{c, 2

5
+

∑c
i=2

1

5i−4
≥ 1} = 14.

The upper bound χρ(D(2, 3)) ≤ 13 comes from the 13-packing coloring of period 240
given in Appendix B3 and the bound χρ(D(2, 5)) ≤ 23 comes from the 23-packing coloring
of period 336 given in Appendix B4.
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Figure 5: Number of colors for a packing coloring of D(1, t) using a greedy algorithm.

5 Concluding remarks

We have shown that the packing chromatic number of any infinite distance graph with finite
D is finite and is at most 40 (81, respectively) for D = {1, t} with t being an odd (even,
respectively) integer greater than or equal to 447.

Among the many research directions in this area, one can try to find better bounds and/or
more simple methods for D(1, t). In fact, running a simple greedy packing coloring algorithm
that consists in coloring vertices of a distance graph one-by-one from the left to the right
with the smallest color with respect to the constraint, suggests that the upper bounds found
in Section 3 can be strengthened. Figure 5 shows the number of colors used by the greedy
algorithm for a packing coloring of Dn(1, t) (with n = 1000000) as a function of t for the
first 500 values of t. One can see on the figure that for large t, the algorithm finds a packing
coloring, using between 30 and 50 colors. Moreover, more colors are needed in general when
t is even compared to when t is odd. But surprisingly, even if we look only at even (or odd)
values of t, the function is not monotonic. We wonder if the same goes for χρ. An interesting
future work would be to study more in details the behavior of this greedy algorithm.
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Appendix A: Modification of the color patterns depending on

the residues of s modulo 48

For s ≡ 0 or 4 mod 48, the color patterns are given in proof of Proposition 6, so only the
modifications to obtain the color patterns for other residues of s are presented here.

s mod 48 8 12 16

P2 +4, 5,

{

32, 35

33, 36

34, 37
+4, 5, 8, 4, 5, 9 idem +

{

32, 35

33, 36

34, 37

P ′

2
+4, 5,

{

38, 41

39, 42

40, 43
+4, 5, 10, 4, 5, 11 idem +

{

38, 41

39, 42

40, 43

P3 +6, 7,

{

44

45

46

,

{

47

48

49

50

+6, 7,

{

32, 35, 38, 41

33, 36, 39, 42

34, 37, 40, 43
+6, 7, 12, 13, 6, 7, 14, 15

P ′

3
+6, 7,

{

51, 53

52, 54 +6, 7,
{

44, 46, 48, 50

45, 47, 49, 51 +6, 7,
{

44, 46

45, 47 , 6, 7,
{

48, 50

49, 51

P ′′

3
+6, 7,

{

55, 56

57, 58 +6, 7,
{

52, 54, 56, 58

53, 55, 57, 59 +6, 7,
{

52, 54

53, 55 , 6, 7,
{

56, 58

57, 59

s mod 48 20 24

P2 idem s ≡ 12 +4, 5,

{

32, 35

33, 36

34, 37
+(4, 5, 8, 4, 5, 9)2

P ′

2
idem s ≡ 12 +4, 5,

{

38, 41

39, 42

40, 43
+(4, 5, 10, 4, 5, 11)2

P3 idem +

{

44

45

46

,

{

47

48

49

50

idem s ≡ 16 +6, 7,

{

32, 35

33, 36

34, 37

P ′

3
+6, 7,

{

51, 53

52, 54 , 6, 7,
{

55, 57, 59, 61

56, 58, 60, 62 0

P ′′

3
+6, 7,

{

63, 66

64, 67

65, 68
, 6, 7,

{

69, 72, 75, 78

70, 73, 76, 79

71, 74, 77, 80
+6, 7, 22, 23, 6, 7,

{

38, 40

39, 41 , 6, 7,
{

42, 44

43, 45

s mod 48 28 32 36

P2 idem +4, 5,

{

32, 35

33, 36

34, 37
idem +4, 5,

{

32, 35

33, 36

34, 37
+(4, 5, 8, 4, 5, 9)3

P ′

2
idem +

{

38, 41

39, 42

40, 43
idem s ≡ 24 +4, 5,

{

38, 41

39, 42

40, 43
+(4, 5, 10, 4, 5, 11)3

P3 +6, 7,

{

44

45

46

,

{

47, 51, 55

48, 52, 56

49, 53, 57

50, 54, 58

+(6, 7, 12, 13, 6, 7, 14, 15)2 idem +

{

32, 35

33, 36

34, 37

P ′

3
idem +

{

59, 61

60, 62 idem s ≡ 24 +6, 7,
{

44, 46

45, 47 idem s ≡ 24 +6, 7,
{

38, 40, 42, 44

39, 41, 43, 45

P ′′

3
idem +

{

63, 66

64, 67

65, 68
0 idem +

{

46, 48

47, 49

s mod 48 40 44

P2 idem +

{

32, 35

33, 36

34, 37
idem s ≡ 36 +4, 5,

{

32, 35

33, 36

34, 37

P ′

2
idem s ≡ 32 +

{

38, 41

39, 42

40, 43
idem s ≡ 36 +4, 5,

{

38, 41

39, 42

40, 43

P3 idem +6, 7,

{

44

45

46

,

{

47

48

49

50

idem +

{

51, 55

52, 56

53, 57

54, 58

P ′

3
idem s ≡ 24 +6, 7,

{

51, 53

52, 54 , 6, 7,
{

55, 57

56, 58 idem s ≡ 24 +6, 7,
{

59, 61

60, 62 , 6, 7,

{

63, 66, 69, 72

64, 67, 70, 73

65, 68, 71, 74

P ′′

3
idem s ≡ 32 +6, 7,

{

59, 61

60, 62 idem s ≡ 32 +6, 7,

{

75, 78, 81, 84

76, 79, 82, 85

77, 80, 83, 86
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Appendix B1: A periodic 23-packing coloring of P 3
∞ of period

768

23, 1, 4, 5, 3, 1, 2, 6, 7, 1, 9, 10, 12, 1, 2, 3, 4, 1, 8, 5, 13, 1, 2, 14, 16, 1, 3, 6, 11, 1, 2, 4, 7, 1, 15, 5, 3, 1, 2, 9, 18, 1, 10, 8, 4,

1, 2, 3, 6, 1, 12, 5, 17, 1, 2, 7, 19, 1, 3, 4, 13, 1, 2, 11, 20, 1, 14, 5, 3, 1, 2, 6, 4, 1, 8, 9, 10, 1, 2, 3, 7, 1, 15, 5, 16, 1, 2, 4, 12, 1,

3, 6, 21, 1, 2, 18, 22, 1, 11, 5, 3, 1, 2, 4, 7, 1, 8, 9, 10, 1, 2, 3, 6, 1, 13, 5, 4, 1, 2, 14, 17, 1, 3, 19, 23, 1, 2, 7, 12, 1, 4, 5, 3, 1, 2,

6, 8, 1, 9, 10, 11, 1, 2, 3, 4, 1, 15, 5, 16, 1, 2, 7, 18, 1, 3, 6, 13, 1, 2, 4, 20, 1, 8, 5, 3, 1, 2, 9, 12, 1, 10, 14, 4, 1, 2, 3, 6, 1, 7, 5,

11, 1, 2, 17, 19, 1, 3, 4, 8, 1, 2, 21, 15, 1, 22, 5, 3, 1, 2, 6, 4, 1, 7, 9, 10, 1, 2, 3, 12, 1, 13, 5, 16, 1, 2, 4, 8, 1, 3, 6, 11, 1, 2, 14,

7, 1, 18, 5, 3, 1, 2, 4, 9, 1, 20, 10, 17, 1, 2, 3, 6, 1, 8, 5, 4, 1, 2, 7, 12, 1, 3, 13, 15, 1, 2, 11, 19, 1, 4, 5, 3, 1, 2, 6, 9, 1, 10, 8, 14,

1, 2, 3, 4, 1, 7, 5, 16, 1, 2, 21, 22, 1, 3, 6, 18, 1, 2, 4, 12, 1, 11, 5, 3, 1, 2, 8, 7, 1, 9, 10, 4, 1, 2, 3, 6, 1, 13, 5, 15, 1, 2, 14, 17, 1,

3, 4, 19, 1, 2, 7, 8, 1, 20, 5, 3, 1, 2, 6, 4, 1, 9, 10, 11, 1, 2, 3, 12, 1, 16, 5, 18, 1, 2, 4, 7, 1, 3, 6, 8, 1, 2, 13, 21, 1, 14, 5, 3, 1, 2,

4, 9, 1, 10, 15, 17, 1, 2, 3, 6, 1, 7, 5, 4, 1, 2, 8, 11, 1, 3, 12, 19, 1, 2, 20, 22, 1, 4, 5, 3, 1, 2, 6, 7, 1, 9, 10, 13, 1, 2, 3, 4, 1, 8, 5,

14, 1, 2, 16, 18, 1, 3, 6, 11, 1, 2, 4, 7, 1, 12, 5, 3, 1, 2, 9, 15, 1, 10, 8, 4, 1, 2, 3, 6, 1, 17, 5, 13, 1, 2, 7, 19, 1, 3, 4, 20, 1, 2, 11,

14, 1, 21, 5, 3, 1, 2, 6, 4, 1, 8, 9, 10, 1, 2, 3, 7, 1, 12, 5, 16, 1, 2, 4, 15, 1, 3, 6, 13, 1, 2, 18, 22, 1, 11, 5, 3, 1, 2, 4, 7, 1, 8, 9, 10,

1, 2, 3, 6, 1, 14, 5, 4, 1, 2, 12, 17, 1, 3, 19, 20, 1, 2, 7, 23, 1, 4, 5, 3, 1, 2, 6, 8, 1, 9, 10, 11, 1, 2, 3, 4, 1, 13, 5, 15, 1, 2, 7, 16, 1,

3, 6, 12, 1, 2, 4, 14, 1, 8, 5, 3, 1, 2, 9, 18, 1, 10, 21, 4, 1, 2, 3, 6, 1, 7, 5, 11, 1, 2, 17, 19, 1, 3, 4, 8, 1, 2, 13, 20, 1, 12, 5, 3, 1, 2,

6, 4, 1, 7, 9, 10, 1, 2, 3, 14, 1, 15, 5, 16, 1, 2, 4, 8, 1, 3, 6, 11, 1, 2, 18, 7, 1, 22, 5, 3, 1, 2, 4, 9, 1, 12, 10, 13, 1, 2, 3, 6, 1, 8, 5,

4, 1, 2, 7, 17, 1, 3, 14, 19, 1, 2, 11, 15, 1, 4, 5, 3, 1, 2, 6, 9, 1, 10, 8, 16, 1, 2, 3, 4, 1, 7, 5, 12, 1, 2, 13, 18, 1, 3, 6, 20, 1, 2, 4, 21,

1, 11, 5, 3, 1, 2, 8, 7, 1, 9, 10, 4, 1, 2, 3, 6, 1, 14, 5, 15, 1, 2, 17, 19, 1, 3, 4, 12, 1, 2, 7, 8, 1, 13, 5, 3, 1, 2, 6, 4, 1, 9, 10, 11, 1, 2,

3, 16, 1, 18, 5, 22, 1, 2, 4, 7, 1, 3, 6, 8, 1, 2, 14, 20, 1, 12, 5, 3, 1, 2, 4, 9, 1, 10, 13, 15, 1, 2, 3, 6, 1, 7, 5, 4, 1, 2, 8, 11, 1, 3, 17,

19, 1, 2, 21

Appendix B2: A periodic 16-packing coloring of D(1, 4) of pe-

riod 320

1, 2, 1, 3, 4, 1, 5, 1, 2, 7, 1, 6, 1, 3, 2, 1, 8, 1, 4, 10, 1, 2, 1, 3, 5, 1, 9, 1, 2, 12, 1, 13, 1, 3, 2, 1, 4, 1, 6, 7, 1, 2, 1, 3, 11, 1, 5, 1, 2,

8, 1, 4, 1, 3, 2, 1, 14, 1, 10, 15, 1, 2, 1, 3, 5, 1, 4, 1, 2, 6, 1, 7, 1, 3, 2, 1, 9, 1, 12, 8, 1, 2, 1, 3, 4, 1, 5, 1, 2, 11, 1, 6, 1, 3, 2, 1, 10,

1, 4, 13, 1, 2, 1, 3, 5, 1, 7, 1, 2, 8, 1, 9, 1, 3, 2, 1, 4, 1, 6, 14, 1, 2, 1, 3, 12, 1, 5, 1, 2, 15, 1, 4, 1, 3, 2, 1, 7, 1, 10, 8, 1, 2, 1, 3, 5, 1,

4, 1, 2, 6, 1, 9, 1, 3, 2, 1, 11, 1, 13, 16, 1, 2, 1, 3, 4, 1, 5, 1, 2, 7, 1, 6, 1, 3, 2, 1, 8, 1, 4, 10, 1, 2, 1, 3, 5, 1, 9, 1, 2, 12, 1, 14, 1, 3,

2, 1, 4, 1, 6, 7, 1, 2, 1, 3, 11, 1, 5, 1, 2, 8, 1, 4, 1, 3, 2, 1, 13, 1, 10, 15, 1, 2, 1, 3, 5, 1, 4, 1, 2, 6, 1, 7, 1, 3, 2, 1, 9, 1, 12, 8, 1, 2, 1,

3, 4, 1, 5, 1, 2, 11, 1, 6, 1, 3, 2, 1, 10, 1, 4, 14, 1, 2, 1, 3, 5, 1, 7, 1, 2, 8, 1, 9, 1, 3, 2, 1, 4, 1, 6, 13, 1, 2, 1, 3, 12, 1, 5, 1, 2, 15, 1, 4,

1, 3, 2, 1, 7, 1, 10, 8, 1, 2, 1, 3, 5, 1, 4, 1, 2, 6, 1, 9, 1, 3, 2, 1, 11, 1, 14, 16

Appendix B3 : A periodic 13-packing coloring of D(2, 3) of pe-

riod 240

1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1, 8, 3, 13, 1, 1, 2, 4, 11, 1, 1, 7, 3, 2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1, 1, 8, 10, 2, 1, 1, 12, 3, 5, 1, 1, 2,

4, 6, 1, 1, 7, 3, 2, 1, 1, 9, 11, 13, 1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1, 8, 3, 7, 1, 1, 2, 4, 10, 1, 1, 12, 3, 2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1,

1, 7, 8, 2, 1, 1, 11, 3, 5, 1, 1, 2, 4, 6, 1, 1, 10, 3, 2, 1, 1, 9, 13, 7, 1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1, 8, 3, 12, 1, 1, 2, 4, 11, 1, 1, 7, 3,

2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1, 1, 8, 10, 2, 1, 1, 13, 3, 5, 1, 1, 2, 4, 6, 1, 1, 7, 3, 2, 1, 1, 9, 11, 12, 1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1,

8, 3, 7, 1, 1, 2, 4, 10, 1, 1, 13, 3, 2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1, 1, 7, 8, 2, 1, 1, 11, 3, 5, 1, 1, 2, 4, 6, 1, 1, 10, 3, 2, 1, 1, 9, 12, 7

Appendix B4 : A periodic 23-packing coloring of D(2, 5) of pe-

riod 336

1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 7, 8, 1, 1, 2, 2, 1, 3, 10, 1, 1, 11, 4, 1, 15, 12, 1, 1, 2, 2, 1, 3, 16, 1, 1, 5, 6, 1, 4, 9, 1, 1, 2, 2, 1, 3,

7, 1, 1, 8, 14, 1, 17, 13, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 10, 19, 1, 1, 2, 2, 1, 3, 11, 1, 1, 7, 4, 1, 9, 12, 1, 1, 2, 2, 1, 3, 8, 1, 1, 5, 6,

1, 4, 15, 1, 1, 2, 2, 1, 3, 18, 1, 1, 20, 21, 1, 7, 22, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 10, 9, 1, 1, 2, 2, 1, 3, 8, 1, 1, 11, 4, 1, 13, 12, 1, 1,

2, 2, 1, 3, 7, 1, 1, 5, 6, 1, 4, 14, 1, 1, 2, 2, 1, 3, 16, 1, 1, 17, 23, 1, 9, 19, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 7, 8, 1, 1, 2, 2, 1, 3, 10, 1
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, 1, 11, 4, 1, 15, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 5, 6, 1, 4, 9, 1, 1, 2, 2, 1, 3, 7, 1, 1, 8, 18, 1, 14, 20, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 10,

21, 1, 1, 2, 2, 1, 3, 11, 1, 1, 7, 4, 1, 9, 12, 1, 1, 2, 2, 1, 3, 8, 1, 1, 5, 6, 1, 4, 13, 1, 1, 2, 2, 1, 3, 15, 1, 1, 16, 17, 1, 7, 19, 1, 1, 2, 2,

1, 3, 4, 1, 1, 5, 6, 1, 10, 9, 1, 1, 2, 2, 1, 3, 8, 1, 1, 11, 4, 1, 14, 12, 1, 1, 2, 2, 1, 3, 7, 1, 1, 5, 6, 1, 4, 18, 1, 1, 2, 2, 1, 3, 13, 1, 1, 20,

22, 1, 9, 23
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