Drone localization and identification using an acoustic array and supervised learning

Valentin Baron 1, 2, 3 Simon Bouley 1 Matthieu Muschinowski 4 Jerome Mars 3 Barbara Nicolas 2
2 Imagerie Ultrasonore
CREATIS - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé
3 GIPSA-SIGMAPHY - SIGMAPHY
GIPSA-DIS - Département Images et Signal, GIPSA-PSD - GIPSA Pôle Sciences des Données
4 GIPSA-Services - GIPSA-Services
GIPSA-lab - Grenoble Images Parole Signal Automatique
Abstract : Drones are well-known threats both in military and civil environments. Identifying them accurately and localizing their trajectory is an issue that more and more methods are trying to solve. Several modalities can be used to make it such as radar, optics, radio-frequency communications and acoustics. Nevertheless radar suffers from a lack of reflected signal for small targets, optical techniques can be very difficult to set in natural environments with small targets, and self-flying drones can avoid radio detection. Consequently, this paper deals with the remaining acoustic modality and aims to localize an acoustic source, then to identify it as a drone or a noise using array measurements and a supervised learning method. The acoustic array allows to determine the source direction of arrival and a spatial filtering is performed to improve the signal to noise ratio. A focused signal is then obtained and used for characterizing the source. The performances obtained to identify this source as a drone or not are compared for two different learning models. The first one uses two classes drone and noise with a classic Support Vector Machine model while the second one is based on an One Class Support Vector Machine algorithm where only the drone class is learned. A database is generated with 7001 observations of drone flights and 3818 observations of noise recordings within a controlled environment where signals are played one at a time, given that an observation is a sequence of 0.2 s of signal. Results of localization show an average error concerning the elevation angle bounded to 3.7 • whereas identification results on this database give 99.5 % and 95.6 % accuracies for the two classes approach and the one class approach, respectively. It is shown that this high accuracy is reached thanks to the intrinsic separability of the created data obtained by the different features that have been chosen to compute.
Complete list of metadatas

Cited literature [21 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02385442
Contributor : Jerome Mars <>
Submitted on : Thursday, November 28, 2019 - 6:04:01 PM
Last modification on : Friday, January 10, 2020 - 11:34:05 AM

File

proc_SPIE_11169-13_ValentinBar...
Files produced by the author(s)

Identifiers

Citation

Valentin Baron, Simon Bouley, Matthieu Muschinowski, Jerome Mars, Barbara Nicolas. Drone localization and identification using an acoustic array and supervised learning. Artificial Intelligence and Machine Learning in Defense Applications, Sep 2019, Strasbourg, France. pp.13, ⟨10.1117/12.2533039⟩. ⟨hal-02385442⟩

Share

Metrics

Record views

48

Files downloads

100