Relationship between ascending thoracic aortic aneurysms hemodynamics and biomechanical properties

Abstract : Goal: Ascending thoracic aortic aneury-sm (aTAA) is a major cause of human deaths. Despite important recent progress to better understand its pathogenesis and development, the role played by deranged hemodynamics on aTAA risk of rupture is still partially unknown. Our aim was to develop and apply a novel methodology to assess the correlation between aTAA rupture risk and hemodynamic biomarkers combining for the first time in vivo, in vitro and in silico analyses. Methods: Computational fluid dynamic (CFD) analyses were performed and validated on 10 patients using patient-specific data derived from CT scan and 4D MRI. Systolic wall shear stress (WSS), time-averaged wall shear stress (TAWSS), flow eccentricity (Floweccentricity) and helicity intensity (h2) were assessed. A bulge inflation test was carried out in vitro on the 10 aTAA samples resected during surgical repair. The biomechanical and rupture properties of these samples were derived: the burst pressure, the physiological tangent elastic modulus (), the Cauchy stress at rupture (), the rupture stretch () and the rupture stretch criterion (ϒ). Statistical analysis was performed to determine correlation between all variables. Results: Statistically highly significant (p<0.01) positive correlation between and the TAWSS (r=0.867 and p=0.001) was found.
Complete list of metadatas

Cited literature [30 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02417671
Contributor : Stéphane Avril <>
Submitted on : Wednesday, December 18, 2019 - 12:42:46 PM
Last modification on : Wednesday, January 8, 2020 - 1:07:47 AM

File

Concemi2019_editor.pdf
Files produced by the author(s)

Identifiers

Citation

Francesca Condemi, Salvatore Campisi, Magalie Viallon, Pierre Croisille, Stéphane Avril. Relationship between ascending thoracic aortic aneurysms hemodynamics and biomechanical properties. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, In press, pp.1-1. ⟨10.1109/TBME.2019.2924955⟩. ⟨hal-02417671⟩

Share

Metrics

Record views

21

Files downloads

56