Skip to Main content Skip to Navigation
Journal articles

High temperature rheology of synthetic two−phase gabbroic aggregates: microstructural heterogeneities and local deformation mechanism

Abstract : The high-temperature rheology of heterogeneous anorthite — diopside aggregates has been investigated numerically, in support to experimental data obtained by triaxial torsion tests, performed at high pressure (400 MPa) and temperature (1150° C). The mechanical data exhibited linear viscous flow. Accordingly, scanning electron microscopy revealed grain sliding mechanisms, but also crystal slip plasticity, recrystallization and micro-fracturing. Finite element computations at the aggregate scale aimed at the understanding of the sequence of active mechanisms and their link to the macroscopic behavior. For instance, we show that the presence of coarser and stronger diopside inclusions in weaker and fine grained anorthite matrix results in very heterogeneous local stress fields, allowing for the activation of multiple deformation mechanisms. Our study indicates that shear zones in the lower crust should be dominated by Newtonian rheology in relation with grain sliding mechanisms, even though complementary accommodation mechanisms such as crystal plasticity and damage may be necessary at the local scale, due to the heterogeneous microstructures.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00641811
Contributor : Alexandre Dimanov Connect in order to contact the contributor
Submitted on : Friday, September 3, 2021 - 3:22:04 PM
Last modification on : Friday, October 8, 2021 - 2:46:04 PM

File

Raphanel2010.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

`

Citation

Jean Raphanel, Alexandre Dimanov, L.A. Nazarova, L.A. Nazarov, A.I. Artemova. High temperature rheology of synthetic two−phase gabbroic aggregates: microstructural heterogeneities and local deformation mechanism. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh / Journal of Mining Science, Springer Verlag, 2010, 46 (5), pp.495-502. ⟨10.1007/s10913-010-0062-1⟩. ⟨hal-00641811⟩

Share

Metrics

Record views

322

Files downloads

34