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Abstract

In this paper a new approach for blurred image restoration is presented. Our algo-

rithm is based on human vision which zooms back and forth in the image in order

to identify global structures or details. Deconvolution parameters are estimated by

an edge detection and correspond to the ones of a chosen edge detection model.

The segmentation is obtained by merging multiscale information provided by mul-

tiscale edge detection. The edge detection is achieved by using a derivative approach

following a generalization of Canny-Deriche filtering. This multiscale analysis per-

forms an efficient edge detection in noisy blurred images. The merging leads to

the best local representation of edge information across scales. The algorithm deals

with a mixed (coarse-to-fine/fine-to-coarse) approach and searches for candidate

edge points through the scales. Edge characteristics are estimated by the merging

algorithm for the chosen model. Scale, direction and amplitude informations allow

a local deconvolution of the original image. The noise problem is not considered

in this work since it does not disturb the process. Results show that this method

allows non-uniformly blurred image restoration. An implementation of the whole

algorithm in a intelligent camera (DSP) has been performed.
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1 Introduction

Shooting a real world image with a camera through an optical device gives a

2D image where at least some parts are affected by a blur. This optical blurring

can generally be correctly modeled by the effect of a Gaussian filtering on the

image. Furthermore, the blur of real edges can have other sources than optical

ones: movement of the item in the scene, coarsiness of resolution in the imaging

process, effect of diffuse lighting, etc. Restoration of blurred images is one of

the main topics in image processing and many methods have been described in

literature. Generally these methods are based on a filtering process, the major

difficulty in image restoration being the lack of knowledge about the degra-

dation process [1]. In some methods the degradation is assumed to be well

known and the restoration problem is reduced to the inversion of the degra-

dation process [2, 3]. In some other approaches the degradation is supposed

to be uniform and the method tends to estimate both the original image and

the blur from the degraded image characteristics [4, 5, 6]. Our present work

lies at the frontier between these two approaches. We assume that the blur

degradation process is according to a new parametric model. This model is

an edge profile characterized by three parameters: scale, amplitude and orien-

tation. The principle of the proposed restoration method (IBEP: identifying

blur edge profile) consists in locally identifying the edge profile parameters
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and then enhancing the edge by a local deconvolution. Identification of var-

ious profiles is achieved by a multiscale edge detection assisted by a fusion

process to eliminate the problems of over detection and mutual influence (de-

localization). This stage produces an image of edge points associated to profile

parameters. These data are then used for local and stable deconvolution. The

figure 2 presents the overview of the method. Note that the method operates

independantly from the noise and does not affect the signal to noise ratio.

This non iterative method has been developed and implemented to achieve a

real-time autonomous system.

In the first section, we present the blur profile model as well as the operator

used for edge detection. The second section is dedicated to the scheme of

multiscale edge detection including the phase of fusion. This stage deals with

the mutual influence problem and produces information used to estimate the

local model. The enhancement method illustrated with practical results and

a comparison with the well known and classical Wiener filtering approach are

presented in the last section.

2 Edge detection

2.1 Edge model

The profile of an edge affected by blurring is modelled by a low-pass expo-

nential function. The normalized edge profile model (figure 1) is defined by

equation (1):
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Csc
(u) =





1 − e−sc u

2
u ≥ 0

esc u

2
u < 0

(1)

This function can be seen as a first-order approximation of the majority of

edges encountered in real image processing and it corresponds to the filtering of

an ideal step edge by a low-pass filter with impulse response: h(u) = sc

2
e−sc|u|.

A somewhat more realistic model should be a step function filtered by a gaus-

sian filter (erf function) but its form is far less suitable for mathematic treat-

ment than the proposed approximation. The parameter sc represents the scale

of the blur. The smaller the parameter value is, the greater the blur is. The

amplitude of the edge will be denoted by Ac and its orientation with respect

to image lines direction by θc (u is the abscissa in the direction θc). Hence, an

edge profile EPc in the image is characterized by three parameters and will

be denoted as:

EPc = (sc, Ac, θc) (2)

The estimation of these three parameters is achieved on the basis of a multi-

scale edge detection method.

2.2 Edge detector

The restoration process is always more or less equivalent to high pass filtering.

It is well known that such an operation is generally unstable and very sensitive

to high frequency corrupting signal (noise). In our design, in order to avoid

this drawback, the restoration process is applied only where a true edge is

present. Therefore these edges have to be detected and localized, even if the
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image is noisy. This task is realized by optimal edge detection such as the

one proposed by Canny and Deriche or Shen and Castan. These filters are

designed to give a optimum response with respect to constraints about signal

over noise ratio, edge localization, multiple responses suppression. We have

shown in previous works that these filters can be seen as special cases of a

familly of filters where response is optimal for the edge model proposed in

the previous section. These filters are parametrized by a scale factor and they

lead to a multiscale gradient estimator. The prototype impulse response of the

generalized filter family [7] is defined as following:

fn,j(x) = −sign(x)n+1 sn+1
j

n!
xne−sj |x| (3)

where n is the index of the filter and j the scale level. We choose the scale

factor sj as:

sj =
s

aj

with s, a > 0 and j ∈ Z.

Shen & Castan[8] and Canny-Deriche [9, 10] filters correspond respectively to

n = 0 and n = 1. Each filter is normalized with respect to unit step response:

∣∣∣∣
∫ 0

−∞
fn,j(τ)dτ

∣∣∣∣ =
∣∣∣∣
∫ +∞

0
fn,j(τ)dτ

∣∣∣∣ = 1 (4)

2.3 Responses and performances of the detectors

The filter is to be applied on the image in order to detect, localize and identify

(determine the parameters) the edges.
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It is therefore necessary to analyze its response and performances with respect

to the blur scale sc.

2.3.1 Response

The response maximum y(0) of these detectors to the edge model is (see details

in appendix A):

yn,j(0)= fn,j ∗ Csc
(0) (5)

=1 − sn+1
j

(sj + sc)n+1
(6)

This result will be used to design the enhancement process (section 4). This

maximum decreases as the scale factor sj increases for sc fixed. It increases as

the blur parameter sc increases for sj fixed.

2.3.2 Edge localization

The definition given by Canny [11] of a criterion for localization of an edge C

in presence of additive white Gaussian noise of variance unity and detected

by an operator f is as following:

L(f) =

∣∣∣
∫+∞
−∞ C ′

sc
(−τ)f ′(τ)dτ

∣∣∣
(∫+∞

−∞ f ′2(τ)dτ
) 1

2

(7)

therefore (see details in appendix B), for n = 1, 2, 3, ...

L(fn,j)n∈{1,2,...},j∈Z =
s2

c

(sj + sc)n+1

√
2n − 1

sj(2n)!
(2sj)

nn! (8)
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Taking into account the 0-order discontinuity at x = 0 for n = 0

L(f0,j)j∈Z =
sc

sj + sc

√
sj (9)

For each detector, the localization criterion presents a maximum according to

the detection scale sj. We define the optimal scale Sn

{
Sn = arg

[
max

sj

(Ln(sj))
]}

n∈{1,2,...}
(10)

Value Sn of sj corresponding to the maximum in localization depends on the

blur scale sc and naturally on the index n of the used detector. On both sides

of this extremum, localization criterion tends toward 0 when sj → 0 and when

sj → ∞. The scale of the detector for this maximum in localization is given

for n ∈ {1, 2, 3, ...} by (see appendix D):

{
Sn =

1

3
(2n − 1)sc

}

n∈{1,2,...}
(11)

and for n = 0:

S0 = sc (12)

2.3.3 Signal to noise criterion

The definition given by Canny for signal to noise ratio in detection of an

edge C in the presence of additive white Gaussian noise of variance unity and

filtered by an operator f is as following:
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Σ(f) =

∣∣∣
∫ +∞
−∞ Csc

(−τ)f(τ)dτ
∣∣∣

(∫+∞
−∞ f 2(τ)dτ

) 1
2

(13)

therefore (see details in appendix C)

Σ(fn,j)n∈{0,1,2,...},j∈Z =
(sj + sc)

n+1 − sn+1
j

(sj + sc)n+1

2nn!
√

sj(2n)!
(14)

For an edge scale sc, this criterion is maximum for sj = 0 and decreases

when sj increases. The evolution of this criterion is naturally connected to the

maximal response presented above.

2.4 Strategy for restoration

The principle of restoration method IBEP (identifying blur edge profile) is

based on the identification of the model for edge profiles in the image. This

identification consists in estimating EPc. The purpose of the restoration is to

enhance the edges by local deconvolution to obtain a step profile:

EP∞
c = (Ac, θc) (15)

A detection on two scales at least is necessary to determine the scale sc and

the amplitude Ac of EPc, orientation being deduced from the gradient direc-

tion information. A study of the proposed detectors shows on one hand that

the best localization of edge is obtained for a detection scale given by equa-

tions 12, 11. On the other hand, the immunity to noise increases as the scale

of detection decreases. It is the same for the maximum response. However, for
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too small scales, localization falls very quickly.

As blur is assumed to be variable in the image, we have to choose for detection

an interval of scales s close to the range of blur scales sc.

From this analysis we can conclude that for detection, localization and char-

acterization of the edges a strategy has to be followed. This strategy in a

multiresolution approach consists in choosing a set of detection scales with a

geometric regular step (noted a) compatible with expected blur in the image,

then from the detection scales close to the maximum of localization, in de-

termining exactly the scale, the direction and the amplitude of the best local

model.

3 Edge image representation

3.1 Multiscale edge detection

For each point I(x, y) of the image, the gradient vector is obtained by a 2D-

separable convolution. Following J. Canny[11], let hn,j be the regularization

operator associated with fn,j:
dhn,j (x)

dx
= fn,j(x). A 2D separable operation is

defined as: hn,j(x, y) = hn,j(x).hn,j(y). Therefore the gradient vector
−−−−→
G(x, y)

is defined as:
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−−−−→
G(x, y) =




Gx(x, y)

Gy(x, y)




=




d
dx

(hn,j(x, y) ∗ I(x, y))

d
dy

(hn,j(x, y) ∗ I(x, y))




n∈{0,1,...},j∈[0,1,...,p−1]

(16)

=




fn,j(x)hn,j(y) ∗ I(x, y)

hn,j(x)fn,j(y) ∗ I(x, y)




n∈{0,1,...},j∈[0,1,...,p−1]

It is easy to compute the edge orientation: θ = Arg[
−−−−→
G(x, y)]. Multiscale anal-

ysis is achieved by a multiscale set of p operators {fn,j}j∈[0,1,...,p−1] of scales

sj = s
aj with j ∈ [0, 1, ..., p − 1], s being initial scale and a > 0. In this way, a

set of p gradient images is obtained: {−→G j}j∈[0,1,...,p−1]. Fine scales and coarse

scales correspond respectively to small and large values of sj.

Candidate edge points {Lj(x, y)}j∈[0,1,...,p−1] in the gradient images are local-

ized by extraction of local maxima. After detection and localization, the next

step (see 2) consists in estimating sc and Ac in the original image. However,

one observes variations of localization and amplitude due not only to noise

but also to influence of neighbor edges. This phenomenon has not been really

analyzed in the literature dedicated to edge detection. In the next section,

we propose a simple and pratical study leading to some rules allowing these

perturbations to be avoided or taken into account in the restoration process.

3.2 Influence of a neighbor edge

It is the distortion induced by a neighbor edge on the detection of the current

edge that is under study. To simplify the discussion of this influence we con-
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sider only infinite scale edge profiles. However, the observations will remain

valid whatever may be the scales. Two kinds of influence can be distinguished

depending on the respective configuration of the two edges. Opposite edges

lead to a substractive influence while two edges in a staircase-like configuration

give an additive influence.

• Firstly we have a configuration of two parallel opposite edges (figure 3), cur-

rent profile EP∞
c = (∞, Ac > 0, θc) and neighbor profile EP∞

v = (∞, Av <

0, θv = θc). hn is the step response to the detector fn. The response to EP∞
c

is the superposition of two responses (to EP∞
c alone and EP∞

v alone):

Dn,j(x) = Achn,j(x) + Avhn,j(d − x) (17)

d being the distance between the two edges and

hn,j(x) = e−sj |x|
n∑

i=0

sn−i
j

(n − i)!
|x|n−i (18)

An edge is assumed to be detected where response is maximum. Therefore

an edge of amplitude Ac is detected at location xc close to 0 if there exists

a zero-crossing in the range ]xc; xv[ where xv is the location of the detection

of a neighbor profile; xc is negative or null (xc 6 0). Absolute value of

xc increases and the amplitude of the response maximum decreases as the

influence of the neighbor edge increases.

Proposition 1 Subtractive influence is the influence of a neighborhood of

gradient sign opposite to the current point one. It tends to decrease the de-

tection amplitude as the detector scale decreases and it displaces the highest

response maximum toward the fine scales.

• Secondly, let us consider the other configuration where edges profiles form

a stair (figure 4): EP∞
c = (∞, Ac > 0, θc) and EP∞

v = (∞, Av > 0, θv = θc).
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In this case, the profile EP∞
c of amplitude Ac will be detected if there exists

a minimum between two maximum responses to two profiles EP∞
c and EP∞

v

(so that they can be separated).

The influence of the neighbor edge tends to displace the response to cur-

rent edge: in that case xc is positive. The amplitude of the response max-

imum increases as the influence of the neighbor edge increases (detection

scale decreases). This remark leads to a second proposition:

Proposition 2 Additive or amplification influence is the influence due to

a neighborhood whose gradient sign is the same as the current point one. It

tends to increase the detection amplitude as the detector scale decreases and

it displaces the highest response maximum toward the coarse scales.

Remark 1 Due to its infinite derivative at 0, Shen & Castan filter does not

delocalize the responses whatever the influence. Nevertheless, the amplitude

increases or decreases following the above propositions.

3.3 Merging

Merging, as considered in IBEP (see figure 2) is defined as the operation con-

sisting in the choosing of the scale providing the best local edge representation

(at a given pixel) among all available scales [12].

We have seen, in a previous section, how in a first step, a set of gradient{−→G j}j∈[0,...,p−1]

and local maximum {Lj}j∈[0,...,p−1] images are obtained from the multiscale

analysis method. In the next step one has to localize and to characterize local

edge profiles (EPc) by merging these data.

Gradient orientations are coded into eight sectors of 45 degrees according to
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the Freeman code (see figure 8): {θ0 = {[−22.5◦, 22.5◦[}, θ1 = {[22.5◦, 67.5◦[}, θ2 =

{[67.5◦, 112.5◦[}, ...θ7 = {[292.5◦, 337.5◦[}}.

According to the discussion on the influence of neighbor edges, it is obvious

that subtractive or additive influence will delocalize the current detected edge.

This delocalization has to be taken into account. But the initial scale a is

assumed to be small enough to avoid any delocalization on the first scale.

The merging algorithm joins the coarse-to-fine approach and the fine-to-coarse

one. Coarse-to-fine approach allows to follow the evolution of the tight edge

profiles across the scales. The best localization of these edges is performed by

this approach. Conversely, fine-to-coarse approach leads to the best detection

for wide edge profiles. A good edge characterization of the various profiles

occuring in a real world image needs the cooperation of these two approaches.

Local maxima of edge gradient are searched in a neighborhood cone through

the scales (figures 6,7). During this search, local maximums under influence

of the neighborhood are picked out and eliminated. The greatest amplitudes

give the best localization (see figure 5).

The merging algorithm is summarized in the following lines.

• for each current point of the original image, from multiscale gradient infor-

mation:

· search for the closest maximums in the coarse-to-fine approach. Ordered

maximums lead to a first list of candidates points.

· Search for the closest maximums in the fine-to-coarse approach. Ordered

maximums lead to a second list of candidates points.

· Discard points under positive influence (see below), points under soustrac-
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tive influence eliminate themselves.

· Through the two ordered lists:

a point is valid if each list represents a maximum at the same scale,

same direction and same localization.

A valid point produces an edge if this localization is exactly the

position of the current point.

Elimination of points under positive influence is carried out as follows: max-

imum are sorted in decreasing scales (fine-to-coarse). Two consecutive maxi-

mums which do not present the same localization are eliminated.

Following the merging stage, a segmentation method is needed to obtain a

binary edge points image. Classic methods like a simple thresholding or the

cöıncidence assumption of Marr and Hildreth [13] [12] can be used. This last

one selects points according to the persistence of the detection across the scales

and consequently it is well adapted to our merging method.

Finally, we obtain a list Pc of ordered points at the current position (xc, yc):

Pc = {(GxjA
, GyjA

, sjA
), (GxjB

, GyjB
, sjB

), ...}). These points are the best edge

information available and represent gradient information.

4 Restoration

The IBEP restoration principle is based on a local evaluation in image of scale

and amplitude equivalent to the model. The deconvolution based on the model

allows to restore the contour. Deconvolution parameters are those of the model

EPc, they can be deduced from the multiscale edge analysis described in the

previous section.
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4.1 Model parameters estimate

This part is developped on the basis of the Shen and Castan[8] operator re-

garding its efficency and simplicity.

Following the notation introduced in the equation 3, the definition of Shen-

Castan operator is:

f0,j(x) = −sign(x)sje
−sj |x| (19)

characterized by:






y0,j(0) = 1 − sj

sj+sc

L(f0,j) = sc

sj+sc

√
sj

s0 [max(L)] = sc

Σ(f0,j) = sc

sj+sc

1√
sj

(20)

The above relations are defined in the continuous domain, to improve the

precision of the results, discrete versions can be introduced. The normalized

filter (
∑+∞

0 f0,j[k] = 1) becomes:

f0,j[k] = −Nsj
sign[k]e−sj |k| (21)

15



with Nsj
= esj − 1. The maximum response y0,j[0] to a simple edge profile is:

y0,j[0] =
∞∑

k=−∞
Csc

[l − k]f0,j [k] (22)

= Ac

(
1 − Nsj

Nsj+sc

)

with Nsj+sc
=esj+sc − 1.

Four detection scales are processed with a geometrical progression step a = 2.

A minimum of two scales of detection is necessary to estimate the parameters

of the current edge profile EPc. As presented in section 3.3 edge points are

selected by a segmentation method which is the coincidence assumption [13]

assisted by a simple threshold. The merging stage produces the list Pc with

all needful information leading to the profile estimation. θc is directly deduced

from the gradient information of the first point in the list Pc. The resolution

of a system of equations gives a solution for Ac and sc.

4.2 Deconvolution

The edge profile is a monodimensional object characterized by its amplitude

Ac, its equivalent scale sc and its orientation θc ∈ {θ0, θ1, ..., θ7}. In the direc-

tion θc, the model profile can be seen as the convolution of a step edge with

the following Point Spread Function:

T (u) =
sce

−sc|u|

2
(23)

where u is the abscissa in direction θc. Let I0 be the original image not affected

by blur and I be the degraded image. In direction θc:
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I(u) = I0 ∗ T (u) (24)

By direct inversion of the blurring operator one obtains a deconvolution func-

tion:

T−1(u) = δ(u) − 1

s2
c

δ′′(u) (25)

The enhanced image could be deduced as follows:

Ĩ0(u) = I(u) − 1

s2
c

I ′′(u) (26)

However, as it is well known, the straightforward application of this equation

leads to an unstable result whatever the choice of the second derivative oper-

ator. We solved this problem by simply substituting the second derivative of

the edge model (EPc) for the second derivative of the image. Along an edge

profile EPc = (sc, Ac, θc), the enhanced image is given by:

Ĩ0(u) = I(u) − 1

s2
c

AcC
′′
sc

(u) (27)

In practice, the deconvolution is separable and it can be applied along the two

directions. Depending on its orientation, an edge is enhanced as following:

• θc = θ0 or θ4 : Ĩ0(x) = I(x) − 1
s2
c
AcC

′′
sc

(±x) (C ′′
sc

(+x) for θ0, C ′′
sc

(−x) for

θ4).

• θc = θ2 or θ6 : Ĩ0(y) = I(y) − 1
s2
c
AcC

′′
sc

(±y)
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• θc = θ2k+1k∈[0,3]
(odd index) : Ĩ0(x, y) =






I(x) − 1
s2
x
AcC

′′
sx

(±x)

I(y) − 1
s2
y
AcC

′′
sy

(±y)

with sx =

sy = 1√
2
sc.

The deconvolution has to be a local process, we choose to limit it so that 95 %

of the amplitude of the theoretical profile is corrected. This limit corresponds

to a spatial range around the current point of [xmin, xmax] with −scxmin =

scxmax = 3, x = 0 being the position of current edge point in the image I.

4.3 Results

Figure 9 shows an example of enhancement on an image section. The sharpness

of the edge profiles is clearly improved. Figures 10 and 11 present a restored

real image for which there exists no original image. This example shows that

strip borders are not restored. Indeed, strip borders present a configuration

of two opposite and close edge profiles. This case of subtractive influence

whatever the detection scales does not allow to estimate the profile parameters.

Two patterns with two different blurring scales for edge profiles have been

designed in figure 13 (original image in figure 12). The enhanced image in

figure 14 confirms the ability of the IBEP method to restore different blurs

if the equivalent scales are included in the analysis range. Furthermore, this

edge enhancement method does not increase the noise which is simply let

unchanged.

Blanks of restoration are the results of no edge detection or wrong estimation

in the fusion stage. The effects inherent to edge detection by the derivative
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approach, as the rounding of corners (see figure 14), affect the restoration

process.

To measure the efficiency of the method, results have been compared with

those given by the standard Wiener restoration method. In this method there

is always a trade off between restoration and noise or blur. The synthetic image

(figure 12) has been locally convolved by a PSF function with two different

scale parameters s1 et s2 to obtain two edge profiles in the image (figure 13).

Then gaussian noise of variance v is added. The original image (sharp and

clean) is used as reference for quality assessment of the restoration methods.

Table 1 presents the results with respect to the degradation parameters for the

two methods. Note that only the best result obtained with Wiener restoration

has been consigned in the table.

This table shows that in absence of noise, the presented enhancement method

gives better results than Wiener filter, this last being not adaptive. As the

variance of noise increases, the performances of the enhancement method mea-

sured by mean square error decrease. IBEP method does not process in any

way the noise and MSE table takes into account the degradation due to the

noise as well as the one due to blurring. However, these results prove that the

method is stable for images corrupted by noise.

5 Conclusion

We have presented a new edge enhancement adaptive method based on the

modelization of the edge profiles. Local estimation of the edge model is achieved

by a multiscale edge detection process. Edge detection process includes mul-
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tiscale edge detection, multiscale merging and segmentation, this last stage

being performed by coincidence assumption and simple thresholding.

This very simple method is efficient especially when the degradation process is

not space-invariant and gives better results than Wiener restoration whatever

its adjustment. The edge enhancement can be used in cooperation with a

denoising method to build a complete restoration system. Our method does

not need any parameter adjustment: scales of detection and number of levels

have only to be chosen according to scale range in the image to restore.

IBEP has been implemented in an autonomous system composed by a camera

and a DSP. The figure 15 shows an example of obtained result. The rate of

the system is 0.5 image per second.

The mutual influence of the edges has been taken into account to minimize

estimation errors of the model; lack of restoration are mainly due to these er-

rors. Some improvements are expected from another study still in progress in

which we try to interpolate the correct values of the neighborhood. An other

way for improving could be based for example on ridge detector.
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gogne, France. He is an assistant professor in the computing, electronic, imaging
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scx

Fig. 1. Edge model defined as an exponential function with sc > 0

Fig. 2. Overview of the method.
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Fig. 3. Subtractive influence of a neighbor edge: the detection amplitude decreases

and the highest response maximum moves toward the fine scales as the detector

scale decreases.

23



s1 = 0.2, s2 = 0.4

MSE v = 0 v = 2 v = 4

degraded image 19.69 19.98 20.30

Wiener restoration 9.85 11.34 11.43

edge enhancement 8.84 11.17 12.65

Table 1

Performances of IBEP and Wiener restoration on the ”square image”. MSE =

1
image size2

∑[
I0(x, y) − Ĩ0(x, y)

]2
. Degradation parameters: v noise variance, s1, s2

blur scales. The best results obtained with Wiener restoration have been consigned.

The IBEP method does not take into account the noise and these results show that

it is stable against this noise.
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Fig. 4. Additive influence of a neighbor edge: the detection amplitude increases and

the highest response maximum moves toward the coarse scales as the detector scale

decreases.
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Fig. 5. (a) Edge profiles (sc = 3 and sc = 0.7) and (b), (c), (d) multiscale analysis

(s0 = 1.6, s1 = 0.8, s2 = 0.4). The best detection is achieved by the first scale for

”sc = 3” profile while the second scale performs the best detection for ”sc = 0.7”

profile.
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Fig. 6. Fine to coarse approach.
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Fig. 7. Coarse to fine approach.
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Fig. 8. Gradient orientations according to the Freeman code θi.
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Fig. 9. Image cross section: blur edge profile and its restoration.
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Fig. 10. Original real degraded image.

Fig. 11. Restoration of a real degraded image. Lines not restored are under subtrac-

tive influence whatever the detection scales.
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Fig. 12. ”Square image”: original image.

Fig. 13. ”Square image”: blurred and noisy test synthetic image.
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Fig. 14. Restored image by the edge enhancement method.

Fig. 15. Restoration by an autonomous system: camera (740× 580 pixels) and DSP

(ADSP 2181 - 40MHz). This figure shows the blurred image and a piece (256× 256

pixels) of restoration (inside the square outline).
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A Response of the detectors to the edge model

The response maximum y(0) of the detectors (eq. 3) to the edge model (eq. 1)

is :

yn,j(0)= fn,j ∗ Csc
(0) (A.1)

=
∫ +∞

−∞
fn,j(τ)Csc

(−τ)dτ

=
∫ 0

−∞
fn,j(τ)dτ −

∫ 0

−∞
fn,j(τ)

escτ

2
dτ +

∫ ∞

0
fn,j(τ)

e−scτ

2
dτ

Symmetry considerations of the filters give:

yn,j(0)=
∫ 0

−∞
fn,j(τ)dτ −

∫ 0

−∞
fn,j(τ)escτdτ

For x < 0, the filters are defined by:

fn,j(x) = −sign(x)n+1 sn+1
j

n!
xnesjx (A.2)

Hence the second term can be interpreted as the integral of a new filter fn,j+c

with a new scale sj + sc and can be written:

yn,j(0)=
∫ 0

−∞
fn,j(τ)dτ − sn+1

j

(sj + sc)n+1

∫ 0

−∞
fn,j+c(τ)dτ

Finally, introducing the regularization (integral) operator, we obtain:

yn,j(0)=h(0) − sn+1
j

(sj + sc)n+1
hn,j+c(0)

=1 − sn+1
j

(sj + sc)n+1
(A.3)
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B Localization

L(f) =

∣∣∣
∫+∞
−∞ C ′

sc
(−τ)f ′(τ)dτ

∣∣∣
(∫+∞

−∞ f ′2(τ)dτ
) 1

2

We write:

fn,j(x)x>0 = −anxne−sj |x| (B.1)

with

an = sign(x)n+1 sn+1
j

n!
=

sn+1
j

n!
for x > 0 (B.2)

We have to take into account the 0-order discontinuity (at the abscissa x = 0)

for n = 0. Then for n = 0:

∫ +∞

−∞
C ′

sc
(−τ)f ′(τ)dτ =2

∫ +∞

0
−sc

e−scτ

2
a0sjτ

0e−sjτdτ

=
s2

jsc

sj + sc

(B.3)

∫ +∞

−∞
f ′2(τ)dτ =2

∫ +∞

0
s4

je
−2sjτdτ

=−2s4
j

[
1

2sj

e−2sjτ

]+∞

0

= s3
j (B.4)

And more generally for n ∈ {1, 2, ...}:
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∫ +∞

−∞
C ′

sc
(−τ)f ′(τ)dτ =2

∫ +∞

0
−sc

e−scτ

2
an

(
−nτn−1 + sjτ

n
)
e−sjτdτ

= anscn

∫ +∞

0
τn−1e−(sj+sc)τdτ − anscsj

∫ +∞

0
τne−(sj+sc)τdτ

= ann!
sc

(sj + sc)n
− ann!sj

sc

(sj + sc)n+1

= ann!
s2

c

(sj + sc)n+1
(B.5)

∫ +∞

−∞
f ′2(τ)dτ =2

∫ +∞

0
a2

ne−2sjτ
(
sjτ

n − nτn−1
)2

dτ

=2a2
n

[∫ +∞

0
s2

jτ
2ne−2sjτdτ −

∫ +∞

0
2sjnτ 2n−1e−2sjτdτ

+
∫ +∞

0
n22τ 2n−2e−2sjτdτ

]

=2a2
n

[
(2n)!

s2
j

(2sj)2n+1
− (2n − 1)!

2sjn

(2sj)2n
+ (2n − 2)!

n2

(2sj)2n−1

]

=
a2

n

2(2sj)2n−1

[
(2n)! − 4n(2n − 1)! + 4n2(2n − 2)!

]

=
a2

n

(2sj)2n−1

(2n)!

2(2n − 1)
(B.6)

Finally:

L(f0,j)j∈Z =
sc

sj + sc

√
sj (B.7)

L(fn,j)n∈{1,2,...},j∈Z =
s2

c

(sj + sc)n+1

√
2n − 1

sj(2n)!
(2sj)

nn! (B.8)

Remark 2 Replacing n! (2n!) by the Γn+1 (Γ2n+1) function extends the rela-

tion B.8 to real n.

C Signal over noise ratio

Σ(f) =

∣∣∣
∫+∞
−∞ Csc

(−τ)f(τ)dτ
∣∣∣

(∫+∞
−∞ f 2(τ)dτ

) 1
2
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∫ +∞

−∞
f 2(τ)dτ =2a2

n

∫ +∞

0
τ 2ne−2sjτdτ

=2a2
n

(2n)!

(2sj)2n+1

=2
sn+1

j

(2sj)2n+1

(2n)!

n!
(C.1)

Combining C.1 and the result A.3 of A.1 we obtain:

Σ(fn,j)n∈{0,1,2,...},j∈Z =
(sj + sc)

n+1 − sn+1
j

(sj + sc)n+1

2nn!
√

sj(2n)!
(C.2)

Remark 3 Replacing n! (2n!) by the Γn+1 (Γ2n+1) function extends the rela-

tion C.2 to real n.

D Scale of the detectors for maximum in localization

For a given edge scale sc, we search for the scale sj leading to the maximum

in localization. This particular scale is denoted Sn.

The maximum in localization corresponds to :

(
dL(fn,j)

dsj

)

sj=Sn

=0

Therefore for n ∈ {1, 2, ...}

dL(fn,j)

dsj

=
d

dsj

(
s2

c

(sj + sc)n+1

√
2n − 1

sj(2n)!
(2sj)

nn!

)

=n!2ns2
c

√
2n − 1

(2n)!

d

dsj




s
n− 1

2
j

(sj + sc)n+1




(D.1)
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Simplifying,
dL(fn,j )

dsj
= 0

⇒
(
n − 1

2

)
s

n− 3
2

j (sj + sc)
n+1 − (n + 1) (sj + sc)

n
s

n− 1
2

j

(sj + sc)
2n+2 = 0

⇒
(
n − 1

2

)
s−1

j (sj + sc) − (n + 1) = 0 (D.2)

Finally

∀sc > 0, n ∈ {1, 2, ...} dL(fn,j)

dsj

= 0 ⇒ sj =
1

3
(2n − 1) sc (D.3)

This scale is denoted Sn. The demonstration of S0 is trivial.
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