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Abstract

In the framework of heavy mid-level processing for high speed imaging, a nonlinear

bi-dimensional network is proposed, allowing the implementation of active curve al-

gorithms. Usually this efficient type of algorithm is prohibitive for real-time image

processing due to its calculus charge and the inadequate structure for the use of

serial or parallel architectures. Another kind of implementation philosophy is pro-

posed here, by considering the active curve generated by a propagation phenomenon

inspired from biological modeling. A programmable nonlinear reaction-diffusion sys-

tem is proposed under front control and technological constraints. Geometric mul-

tiscale processing is presented and a discussion about electronic implementation is

opened.
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1 Introduction

Background framework of this work consists in the development of processing

systems and their electronic implementation for high speed image intelligent

sensors. Nowadays, many image processing techniques, particularly most of

the linear or probabilistic ones, are included in real-time systems, but many

families of mid-level techniques still remain unusable for such time processing

requirements.

For high speed imaging applications, only some families of simple low-level

techniques can be used, other techniques being applied on recorded data. For

high speed imaging treatments, the approach of artificial retinas consisting in

locating processing at the pixel stage gives some good results [1–3]. However,

an important disadvantage lies with this approach: Many treatments either

remain very difficult to adapt to retinas architectures or imply development

of specific architectures. To avoid this disadvantage, a generic way of image

processing is proposed.

Mathematical morphology [4,5] has been specifically developed to meet image

processing expectations. Therefore, it leads to solve a major part of image pro-

cessing problems and is widely used. High speed electronic implementations

of basic morphological operators as dilations have already been studied, for

instance with the use of a nonlinear electronic network [6]. However, the most

important families of mathematical morphology treatments are based on two

other main heavy operators which are geodesic reconstruction and watershed

algorithm.
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Different architectures have been built in order to implement these mid-level

treatments [7–9], most of them using numerical technologies, able to do real-

time image processing for usual speeds, but with a technological gap prevent-

ing high speed imaging applications.

In this context, a possible generalization of the geodesic dilation is explored by

constraining its construction with compatibility regarding a second connexity

notion linked to the regularity of the shape of the objects. It is not expressed

algebraically, but through a more intuitive approach. In fact, geodesic dilation

can be interpreted as a topological wave propagation starting from a marker

whose evolution is defined by the structure of the image. PDE (Partial Dif-

ferential Equations) are a very convenient tool to generate this propagation

where features of the image are included as intrinsic parameters of the equa-

tions. Furthermore, some of the reaction-diffusion PDE include a notion of

regularity for the propagation phenomenon. For some of them, it is even pos-

sible to adjust parameters defining the capacity of the wave to travel through

straight zones, holes, breaks and so on. Therefore, it defines a kind of geodesic-

active curve or region.

Another aspect is very important for the notion of objects’ regularity: The

scale from which the object is observed. But, carrying out multiscale analysis

through successive multiple wave propagation is contrary to the high speed

imaging technological gap. In order to reduce treatment times, the ideal case

would be to achieve a multiscale analysis with only a one-pass wave prop-

agation. In fact, a phenomenon producing propagation of wavefronts with

increasing regularity along the height of the transition part is studied.

Besides, a systematic way of exploring dynamical systems described by PDE

has been obtained by developing electronic circuits, which were very efficient

for real-time analysis. These techniques led to analog computers, electrical
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lattices [10] or to the more general concept of Cellular Neural Network [11]

(CNN). Although power computing has experienced an exponential growth,

these dedicated systems have benefited from integrated electronics and still

remain an alternative for high speed processing. Thus, it is possible to use this

kind of electronic device to obtain propagation speeds allowing it to overcome

the high speed imaging technological gap.

Therefore, the purpose of this study is to propose a reaction-diffusion system

with interesting properties, defined under technological constraints in order to

suggest an electronic implementation. This article is organized as follows: A

choice of reaction-diffusion system is presented in section 2; then, the process

of propagation of topological waves is studied according to the distribution

of the local diffusive parameters. This provides a way to control the propaga-

tion paths of the travelling waves and to deduce a generic image processing

method. In section 3, this image processing is applied on specific images, en-

abling edge restoration/ interpolation or one-pass multiscale approximation.

This section is concluded by a preliminary result on grey level based segmen-

tation, indicating that this system can lead to generic processing. Section 4 is

devoted to open discussion on some possible implementation of an electronic

circuit which could be able to perform high speed image processing. Finally,

section 5 concludes and gives perspectives of this study.

2 A discrete bistable system as a Multiscale Regularity PDE

Not all interesting reaction-diffusion PDE have realistic electronic implemen-

tation. When dealing with regular lattice, the simplest way to connect nodes

leads to the classical heat equation. Unfortunately, in this medium, no stable
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propagation waves can exist. In order to overpass this limitation, a possible

modification is to use the most general reaction-diffusion equation :

dvn,m

dt
= Dn,m

[

vn−1,m + vn+1,m + vn,m−1 + vn,m+1 − 4vn,m

]

− f(vn,m) . (1)

From a dynamical system analysis, the minimum number of equilibrium points

is three in order to assure the existence of stable propagating front wave with

controllable shape. This leads naturally to the bistable equation.

In this section a study of the propagation in a system modeled by this equa-

tion is presented. It will be shown that, although this model is quite simple

and its analog electronic implementation easily reachable, it allows the paths

of propagating waves to be controlled, and therefore leads to deduce some

interesting properties for image processing.

Let us consider a bi-dimensional regular discrete (N,M) − length grid Ω on

which the following bistable diffusive system is defined:

dvn,m

dt
= Dn,m

[

vn−1,m + vn+1,m + vn,m−1 + vn,m+1−

4vn,m

]

− vn,m(a − vn,m)(1 − vn,m) ,

(2)

where Dn,m is a local diffusion parameter, a a threshold parameter and vn,m

corresponds to the information located at node (n,m) (for instance, the in-

tensity value of the pixel (n,m)).

The system is completed by the Neumann conditions (zero-flux conditions) on

the border ∂Ω of the definition domain Ω, so that

∂vn,m

∂η
= 0 if (n,m) ∈ ∂Ω , (3)
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where ∂
∂η

denotes the outer normale derivative at the boundary.

In the following section, propagation phenomena emerging from this system

are investigated, from which a generic image processing method is then de-

duced.

2.1 Wavefronts in the homogeneous grid case

For the sake of simplicity, we first consider the case where the local diffusion

parameter is a constant so that

Dn,m = D ∀(n,m) ∈ Ω . (4)

This particular system corresponds to a discrete version of the FitzHugh-

Nagumo PDE (without recovery term) which was established to describe prop-

agation phenomena in various biological systems. In a one-dimensional space,

it allows the study of the electric propagation of the leading edge of an ac-

tion potential, the neuronal information travelling along the membrane of the

nerve fibers [12,13]. Its discrete form (discrete Laplacian) corresponds to the

myelinated nerve fibers case. In a continuous bi-dimensional space, it is widely

used to study wavefront propagation in myocardial tissues [14].

In the uncoupled case, i.e. when D = 0, vn,m = 0 and vn,m = 1, ∀{n,m} are

two attracting steady states, while vn,m = a, ∀{n,m} is an unstable equilib-

rium point of the system, acting as a threshold.

In case of strong coupling, i.e. when D is large, we expect that a travelling

wave will propagate depending on the value of a with a constant speed so that

if a < 1/2 (a > 1/2 resp.), the steady state v = 1 (v = 0 resp.) will propagate

at the expense of the steady state v = 0 (v = 1 resp.). When a = 1/2, no
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propagation occurs [15].

The response of the system, especially the shape of a wavefront, depends not

only on the parameters of the system, but also on the initial conditions.

Let a marker be defined as a particular family of initial conditions for which

vi,j(t = 0) = 1 for a set of (i, j) values, vk,l(t = 0) = 0 otherwise. The symme-

try of the marker will determine the kind of travelling waves and its spatial

shape. Among them, the two main propagating structures are the planar and

the circular wavefronts. The following results are illustrated using numerical

simulations obtained using a 4th order Runge-Kutta algorithm.

2.1.1 Planar waves

They emerge from a rectangular marker, as illustrated in Fig. 1 and 2 where

two planar wavefronts propagate in opposing directions.

The symmetry induced by this choice of marker allows us to reduce the system

to a one-dimensional space problem, expressed by:

dvn

dt
= D[vn−1 + vn+1 − 2vn] − vn(vn − a)(vn − 1) . (5)

This system of equation has been widely investigated to study the neural

propagation in myelinated nerve fibers. From these studies, some important

results can allow us to characterize the process of propagation, although no

explicit overall analytical expression of the wavefront is available.

In the first place, when the coupling between nodes is strong, the differential-

difference system (5) can be written, using a continuum approximation, so

that

∂v

∂t
= D∆v − v(v − a)(v − 1) , (6)
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where ∆ denotes the Laplacian operator. Using a travelling-wave analysis

[15], one can express the propagation wave profile according to the travelling

coordinate ξ = n − ut and initial conditions ξ0, and the unique velocity u of

this topological wave as a function of D and a, so that

v(ξ) =
1

2

[

1 ∓ tanh[
ξ − ξ0√

8aD
]

]

(7)

u = ±(1 − 2a)

√

D

2
. (8)

Eq. (7) indicates that the width of the wavefront decreases when D becomes

smaller (this relationship remains valid even in a discrete system), while eq.

(8) tells us how the parameter a controls the propagation, depending on its

value in comparison with 1/2. In particular, it shows that the velocity in-

creases when a decreases. Note also that the ± sign in eq. (8) corresponds

to a bidirectional propagation. Qualitatively, these observations remain valid

in the discrete case. For instance, Fig. 2 illustrates bidirectional wavefronts

whose velocity is constant.

Nevertheless, a major feature due to discreteness is the failure of the propaga-

tion when D is smaller than a critical non-zero value D∗ > 0, which is missed

in the continuum approximation. In this case, the wavefront is pinned [15–17],

as illustrated in Fig. 4. From [17], an asymptotic expression of this parameter

when a −→ 0, is

D∗ =
1

4
a2 , (9)

which is in accordance with the results presented (In this case D∗ = 0.0025).
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2.1.2 Circular wave

This kind of travelling wave emerges when the marker tends to be circular, or

has a circular symmetry, as illustrated in Fig. 3.

The spatial shape determines the velocity of the wavefronts, so that, in a con-

tinuous system [18], a convex travelling wave propagates slower that a planar

one. This behaviour matches the comparative results in Fig. 4 when the dif-

fusive parameter D becomes large enough.

As D decreases, the wavefront width becomes smaller, emphazing the discrete-

ness of the system. Therefore, a circular distribution along discrete nodes is no

longer possible, and is transformed into a combination of planar waves with

different wave vectors. As a consequence, “circular wave” and planar wave ve-

locities eventually merge as D decreases. In addition, propagation fails for the

same value D∗ of D. From now on, we will assume that D∗ is not a function of

the kind of travelling waves, but only determined by the threshold parameter

a.

2.2 Wavefronts in an inhomogeneous grid case

Dramatic in biological systems, the propagation failure phenomenon can be

useful to develop new approaches in image processing. Contrary to classic

cases, the point of interest is indeed the blocking case, allowing the path of

the topological travelling wave to be controlled and leading to mid-level image

processing. An image is then defined as a discrete bi-dimensional grid where

nodes correspond to pixel sites. Each node is coupled to its nearest neighbours

in a diffusive manner weighted by the local intrinsic information of the image.

The main idea is to initiate a wavefront and let it propagate until it reaches
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an object Θ to be detected. In order to prevent further propagation, we now

impose the following rule in eq. (2):

Dn,m =































Dp > D∗ if (n,m) /∈ Θ

0 othervise.

(10)

As Dp > D∗, propagation is possible if an appropriate marker is set outside

the object. In a complementary way, D = 0 within the object, pins this wave-

front at its borders, as illustrated in Fig. 5: The object is composed of two

horizontal strands whose nodes are uncoupled. A rectangular marker is set at

the top lines of the grid initiating a planar wave propagating along the vertical

axis. Due to the propagation failure criterium, this wave stops at the border

of Θ and can only extend through the corridor separating the two parts of

the object. Because of this symmetry breaking, a circular wave emerges and

propagates in the bottom part of the grid. Eventually, a stationary state is

obtained so that the whole object is surrounded by the final state v = 1.

In addition, other new features appear from this inhomogeneous coupling. As

presented in Fig. 6, a wavefront can not only be blocked due to the parameters

of the system, but also to its geometry.

Compared to the case of Fig. 5, the wavefront is pinned in the corridor, leading

to another final state, because of a larger diffusive parameter Dp. The corre-

sponding mathematical mechanism leading to this blockage is based on the

existence of a stationary wave due to a maximum curvature prohibiting the

emergence of a travelling wave. To put it simply, a larger width of the wave

implies that the wave cannot propagate through narrow paths. Note that this

result can also be observed in a bidimensional continuum space [18,19].

A systematic study of the relationship between the diffusive parameter D, the
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width W and the thickness T of the corridor is presented in Fig. 7. The results

indicate that there exists a critical value Dm above which no propagation can

emerge from the corridor. Obviously, the larger and thinner the corridor is,

the wider a propagating wave can be, therefore, Dm increases. As discussed in

the following section, this property can be interesting to integrate objects or

to delevop active curves.

In all the previous cases, it was implied that a marker necessarily generates

a travelling wave. Actually, specific initial conditions are to be taken into ac-

count depending on the parameters of the system [20]. More precisely, there

exists a threshold surface for which the nodes must be above the excitation

threshold a to ensure the initiation of a fully developed travelling wave. If

an initial condition does not satisfy this requirement, the initial surface being

smaller than the threshold one, then it decays to zero. Let us restrict this

problem to initial conditions corresponding to a square marker of side W , as

defined previously.

The results are presented in Fig. 8, showing that the size of the marker is a

function of the diffusive parameter D. As the system becomes more diffusive,

the marker is more spread on the grid, implying that fewer nodes will be above

the excitation threshold. The purpose of our study is to initiate a propagation

from a marker of whatever size. Therefore, we impose these initial conditions

as Dirichlet ones, by setting the following Marker-rule:

Dn,m = 0 if (n,m) ∈ Marker (11)

It corresponds to a forced propagation condition, implying the always suc-

cessful initiation of a propagating wave [17], if the local diffusive parameter D

in the neighbourhood of the marker is above propagation failure criterium D∗.
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2.3 A Generic Image Processing Method

Now let us build a generic image processing method. For this, we will use the

marker principles of geodesic mathematical morphology with the possibility

of combining them with other image processing techniques.

A and B will denote sets or, with the same notation, indicate set functions, but

they are more generally intended to be greyscale image quantities as different

transforms of intensities, including duality to allow most possible types of

operators, of the norms of local vectors of directional derivatives, or even of

scalar-type results of other image processing as for example linear filtering.

A and B can be determined from the same image or from different images.

Here A will represent binary markers from which the propagation phenomenon

starts, and B the topological constraint derived from the image. The couple
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of scalar discrete functions (A,B) defines the following equation:

Eε(A,B) =






























































































































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








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

































dvn,m

dt
=

D(B)

ε

[

vn−1,m + vn+1,m+

vn,m−1 + vn,m+1 − 4vn,m

]

− fa(vn,m)

fa(v) = v(a − v)(1 − v) with a < 1

2

D(B) =
1 + tanh(20B − 12)

2

v|t=0 = A

(12)

Here a will have the value 0.1 and the definition domain Ω will be the (n,m)−

length grid.

The system is completed by the Neumann conditions (zero-flux condtions) on

the border ∂Ω of the definition domain Ω.

The Marker-rule expressed by eq. (11) is supposed set, otherwise specified.

This choice of constructing D(B) corresponds to a bimodal distribution of

the local diffusive parameter separated by D∗, allowing the control of the

propagating paths.

The propagation phenomenon defined by E tends to a convergence state noted

v∞

ε (A,B), theoretically corresponding to infinite t but practically a millisecond

value will be sufficient in most cases. v∞

ε (., B) is idempotent if eq (11) is set
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or not, in the mean of

v∞

ε (A,B) = v∞

ε (v∞

ε (A,B), B) . (13)

Depending on ε, several properties arise:

• v∞

ε (., B) tends to identity, when ε −→ +∞,

• v∞

ε (A,B) −→ 1Ω, when ε < min(D(B), Dm), if the marker rule is set,

• v∞

ε (A,B) −→ 1⊘, when ε < min(D(B), Dm), if the marker rule is not set.

Then, let us define the main image processing operator as:

Φε,h(A,B) = {v∞

ε (A,B) ≥ h} . (14)

The propagation phenomenon is similar to the geodesic propagation, but with

an additive scale of regularity constraint, defined by the couple variables (ε, h)

with ε defining the magnitude order of the scale of regularity of the one-pass

propagation and h a thresholding along the scale regularity consequently to

the choice of ε in the final result when the propagation is definitively blocked

by the topological constraint. It is equivalent to fix ε and deduce h or to fix h

and deduce ε. Eq. (14) leads to the immediate following properties:

• When ε −→ 1+/D∗, Φε,h(A,B) approaches the geodesic reconstruction of

B marked by A.

• Φε,h(., B) increases with fixed regularity scale parameters and increases with

its two regularity scale parameters increasing independently.

• Φε,h(A, .) decreases with fixed regularity scale parameters and decreases

with its two regularity scale parameters increasing independently.
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It allows the generation of many morphological-type analysis techniques, con-

structed as classic techniques through the morphological theory, but with some

advantages from the point of view of active curves (considering the evolv-

ing front) or regions (considering the interior of the evolving curve) as their

greater regularity, without the topological problems of the deformable tem-

plates. Warning: if the Marker-rule is not imposed, there is no strict extensivity

property but the authors think that a low extensivity property depending on

the observation scale could be defined, extending algebraic closing, opening,

granulometries, convexity spectra and so on.

As illustrated by the numerical study, ε plays the role of a main geometric

scale parameter and h a secondary geometric scale parameter. The > sign

produces an active geodesic region approach, < producing a dual region ap-

proach, whilst replacing it by = produces an active geodesic curve approach.

Other operators can be derived from the extrema of the Φε,h(A,B) function.

For the following section, c represents 1/ε.

3 Numerical Study

In this section, we characterize the propagation of waves in more complex and

representative structures. The aim of this section is to extract from simple

geometric cases the effects of topological and morphological structures on the

propagation in order to illustrate (by using a 4th order Runge-Kutta algorithm)

its generic image processing possibilities. Among them, we focus on the ability

of this system to reveal some multi-scale geometric information. Finally, we

show that segmentation processing can also be reached.
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3.1 Scale and propagation blockage

First, we illustrate the effect of the scale factor on the propagation break. We

turn to the geometrical aspect, so binary images are sufficient. In this case,

D(B) is nearly equal to B which comes directly from the image. Figure 9 shows

the sifter behaviour of the propagation: Its capacity to propagate through a

corridor. For a given c, there exists a minimum corridor width above which

waves can propagate though. The marker is the same in each case, but c is not

the same for each propagation: It is growing from left image to right image.

It works as if we were looking at the corridor from a higher distance: It seems

to become thinner and thinner. Then, we can see that the minimum corridor

propagation width is growing with c.

For a given c, the Fig. 10 illustrates that the propagation blockage has an

isotropic aspect, in the case where the size of the geometrical features of the

image is sufficiently large compared to the size of the mesh of the system.

Figure 11 illustrates the same behaviour but with a rather porosity effect: the

more c increases, the less propagation penetrates in the porous medium.

In a sense, propagation becomes more visquous. It could be interpreted as if

each elementary part of the propagation front was blocked by a virtual dila-

tion whose size is determined by the scale c. Therefore, c can also be denoted

as the “scale of observation”. Note that it acts as if this scale determines a

size for a class of discrete negligible details. It is also true for the marker, if

the Marker-rule is not used: If its measure is under this minimal size, it is

equivalent to the null region and the propagation falls before disappearing to

the null function.

This viscosity aspect induces an immediate property of interpolation or restora-
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tion of the geometric borders, with c determining the capacity of interiors/exteriors

separation of the propagation phenomena, as illustrated in Fig. 12.

3.2 One-pass multi-scale approximation

Figure 13 shows that, when using sufficient c, the propagation acts like a vis-

cous gauge, producing a viscous hull-like effect: The object is located between

the two final states, allowing the definition of an area of interest in the image.

Then, we can see in the following Fig. 14, with levelling the result of this

one pass propagation, that we obtain multiscale geometric information: Lower

levelling produces higher level of details and higher levelling produces a higher

level of approximation.

If we push the levelling to its limits, we can almost obtain the initial shape of

the object for very low levelling and sorts of approximation hulls for levelling

near one. This scale aspect of h depends on the primary scale determined by

c: In fact, it is a secondary variation parameter around a sort of mean scale

parameter. If c is higher, it produces a panel of viscous-hulls.

If c is smaller, it produces a panel of de-noised interiors/exteriors. A middle c

produces a sort of progressive elimination of breaks of the initial shape. The

value of c has to be adjusted depending on the application aim. An interpre-

tation of means of measure of defects on manufactured objects on output of

a production plant could be profitable: In a one go, it allows the quantifica-

tion of noise, breaks and distortion/deformation, through a measure-function

consisting in extracting one or more attributes for each h, giving a description

of the shape. It can also be seen as a multiple pre-processing step between

other treatments, leading to obtain more robust final results. With another
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kind of markers (grid-like ones for example), it could even be used for charac-

terizing patterns. Moreover, identifying relationships between scale and length

or surface of penetration (in the case of porous media for example), fractal

spectrum-like descriptors could be obtained, leading to facilitate the distinc-

tion between rugosity and noise.

Note also that some fusion/separation aspects appear when h varies, allowing

the subdivision of geometric parts of objects, as if successively adding the ef-

fects of several centrum of propagation. Therefore, we can view the object as

with a multiple geometric description, all this in one go. Indeed, there is an

effect of front touch which could certainly be used for SKIZ-like based image

processing algorithms. In all situations, it can imply artificial retinas allowing

the storage of multiple scale geometric analysis in the level of the output of one

stationary state from an electronic network based only on variable couplings.

It is also possible to consider the multiscale geometrical analysis as a fuzzy

segmentation function, as shown in Fig. 15. Here, the main scale parameter

is high and the secondary scale parameter defines the connection between ob-

jects. As a first approach, we have a global group of objects, then divided into

two groups with a large connection or not, and finally into four elementary

objects. In fact we have multiple second connectivity distributed in a hier-

archical structure due to its monotony regarding the level parameter, as for

segmentation trees, but here stored in an image result. This can be considered

as a fuzzy result and manipulated through fuzzy operators with other image

results in order to obtain an analysis with multiple descriptions. This kind of

technique could be used for sensor fusion information.
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3.3 Grey level based segmentation

In order to obtain grey level based segmentation, it is straightforward to in-

clude an estimation of the gradient information in the topological constraint

derived from image, that is B. B has naturally to vary in a monotonic way

with gradient. For simplicity, the choice of B has been realized by including

a normalization on a power function of the gradient magnitude. Finally, with

the following Fig. 16, we illustrate the result produced with :

B = 1 − |gX + igY |1/4

maxΩ(|gX + igY |1/4)
, (15)

where gX is the numerical gradient of the image, corresponding to the dif-

ferences in the row direction and gY is the numerical gradient of the image,

corresponding to the differences in the column direction.

The subsequent values Dn,m are shown in the bottom right inset of Fig. 16. In

this example, two markers are imposed, one in the background between the

two columns, and the second one, inside the right cheek (see the top left inset).

The blocked frontwaves are presented in the top right inset and in superim-

position with the initial image in the bottom left inset. The results indicate

that this choice of B gives a very good greyscale segmentation for both areas.

Note also that for a complete segmentation, we could, for instance, use a grid

of markers. An important remark, when dealing with grey levels, is that the

propagation depends not only on the density of the obstacle but also on its

height, therefore the choice of B may not be trivial. To conclude, the choice of

B and the evaluation of corresponding segmentation performance is a major

point which has to be systematically explored in a future work.
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4 Electronic Implementation

In order to reach high speed image processing, a specific programmable elec-

tronic device has to be conceived. However, it is not attended in this section

to present an existing system but rather give a realistic scheme on how it

could be realized. A possible electronic implementation for such tasks could

be composed of a specific analog device controlled by a digital part. The major

reasons are:

• to take advantage of the very fast signal processing character of analog

circuits,

• to benefit from the fexibility of digital systems,

• to design it as a complement of classic numerical systems.

Figure 17 shows how the different parts of the treatment can be shared out.

This mixed-signal architecture is split into three different parts: Two digital

and one analog. The diffusive coupling Dn,m is extracted depending on the

choice of B and the location of the marker(s). Because of multiple choices,

this task is digital. The resulting values are then set in the analog network via

DAC (Digital-to-Analog Converter).

The architecture of the analog network is presented in Fig. 18, details of which

are shown in Fig. 19.

Initially, each capacity of each node is disconnected from the network, so that

the markers can be introduced by loading the capacities (acting as analog

memories). The local diffusive couplings Dn,m are set by a multiplexing logic,

by controlling the forward transconductance gm(n,m) of the OTAs [21] (Op-

erational Transconductance Amplifier) of the coupling circuit via the associ-
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ated polarization currents. The initialization part is finished by simultaneously

switching on the analog commutators via a synchronization control voltage

Vsync and resetting the digital counter. As the capacitors are now connected,

using Kirchhoff’s laws, the corresponding equations are

In,m = gm(n,m)
[

(Vn−1,m − Vn,m) + (Vn+1,m − Vn,m) +

(Vn,m−1 − Vn,m) + (Vn,m+1 − Vn,m)
]

(16)

In,m = C
dVn,m

dt
− Inl(Vn,m) , (17)

where Inl(Vn,m) is the current-voltage relationship of the nonlinear circuit. As

the differential output voltage of the cascaded Gilbert cells [22] is connected

to this input of an OTA, this current can be expressed so that, assuming that

the devices are unsaturated,

Inl(Vn,m) = −gmK2Vn,m(Vn,m − a)(Vn,m − 1) , (18)

where K is a multiplicative intrinsic constant of the Gilbert cell.

Note that this cubic function could be also realized by a less precise but more

compact low voltage circuit as in [23]. From eqs (16) and (18), and after

normalization, the system of equations modeling the network becomes

dVn,m

dτ
= Dn,m

[

Vn−1,m + Vn+1,m + Vn,m−1 + Vn,m+1−

4Vn,m

]

− Vn,m(a − Vn,m)(1 − Vn,m) ,

(19)

with Dn,m =
gm(n,m)

gmK2
and the rescaled time τ =

gmK2

C
.

The fact that K ≫ 1, gm ≫ 1 and C, chosen so that C ≪ 1 lead to obtain

a very fast image processing network (τ ≫ 1). The treatment is stopped by
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switching off the analog commutators, after the counter reaches a specified

value, as proposed in Fig. 17. Another possibility could be to compare the

state of the system at periodic times to check if it reaches stationarity. The

final result is then loaded by the digital board via ADC (Analog-to-Digital

Converter).

5 Conclusion

The authors have proposed a nonlinear electronic network inspired from trans-

mission phenomena in biological systems. It allows the conception of circuits

for high speed image processing based on front propagation principles. This

article illustrates this on an active region algorithm, making a parallel between

the point of view of morphological geodesic reconstruction and a-priori the

more robust active curve approach, with the idea of using the different scales of

regularity of the bistable propagation along the height of its front. Even if this

efficient method is rather heavy, the article shows that an adapted physical

implementation can overcome a technological break point. Therefore, it could

generalize, for instance, the use of deformable templates. Further works will

concern on the one hand the generalization of electronic front propagation ma-

nipulation (how to determine B is the key point) in order to expand the field

of applicable treatments and on the other hand the study of SOC (System-

on-Chip) possibilities, especially by adding FPGA based controller adapted

to complex decompositions and allowing the completion of treatments by lin-

ear and probabilistic parts for example, mixing analog and numeric methods,

in order to create a specific high-level programming and controlling system

for “artificial retina”-type high speed image processing. High speed intelligent
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sensors development for the industry is one aim for these works.
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List of captions

Figure 1: A planar wavefront propagation using a greyscale representation

where white corresponds to v = 1 and black to v = 0. The top left inset

shows the marker. The other insets illustrate the propagating wavefronts at

different times (in arbitrary units). Parameters: a = 0.1 and D = 1. Results

obtained from numerical simulations (4th order Runge-Kutta algorithm) of

eq. (6).

Figure 2: v100,n at different times corresponding to the insets of Fig. 1, illus-

trating the constant velocity. The dotted line shows the marker, the contin-

uous lines, the propagating wavefront at t = 40, 80 and 120 a.u.. Parameters

: a = 0.1, D = 1. Results obtained from numerical simulations (4th order

Runge-Kutta algorithm) of eq. (6).

Figure 3: A circular wavefront propagation using a greyscale representation

where white corresponds to v = 1 and black to v = 0. The top left inset

shows the marker. The other insets illustrate the propagating wavefronts at

different times (in arbitrary units). Parameters: a = 0.1 and D = 1. Results

obtained from numerical simulations (4th order Runge-Kutta algorithm) of

eq. (2).

Figure 4: Propagation velocity versus the diffusive parameter D. Numerical

results comparison between planar wave speed (continuous line) and circu-

lar wave speed (dotted line). Parameter : a = 0.1.
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Figure 5: Propagation of a wavefront in an inhomogeneous grid. Inset (a)

shows the initial marker and an object Θ. Inset (b) shows the wavefront

crossing the corridor (of width W and thickness T) separating the two

parts of Θ at t = 100 a.u.. Inset (c) shows the propagation of a circular

wave emerging from the corridor at t = 200 a.u.. Inset (d) shows the final

stationary state, obtained at t = 300 a.u.. Parameters: a = 0.1, D = 1,

W = 6 nodes, T = 4 nodes.

Figure 6: Unsuccessful propagating wave via a corridor a=0.1, W=6 nodes,

T=4, D=1.2

Figure 7: Diffusive parameter D versus width W curves for different values

of thickness T of Θ. When D is above this curve the wavefront is pinned.

When D is beneath this curve, the wavefront can cross the corridor and

propagate. Parameter: a=0.1

Figure 8: Determination of the propagation conditions depending on the size

of the marker the diffusive parameter D. The border above (continuous line)

corresponds to a collapse of the marker due to a too strong diffusive parame-

ter. The border beneath (dotted line) corresponds to the propagation failure

due to too weak coupling. Parameter: a=0.1. Initial marker: square whose

width ranges between 1 and 10 nodes.

Figure 9: Sifter effect (Top: shape, middle: marker, bottom: propagation

blockage) for different values of c: From left to right: c = 0.25 to c = 4.75

by incremental steps of 0.75.
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Figure 10: Isotropy (Top: shape, middle: marker, bottom: propagation break)

in the case where c = 2.

Figure 11: Scale aspect of c: Porosity effect (up: shape and marker, down:

propagation blockage for increasing values of c from left to right and from

top to bottom: c = 0.1 to c = 1.75 by incremental steps of 0.15).

Figure 12: A simple example of edge restoration/interpolation with an in-

terior marker in the case where c = 3. Left: starting configuration, Right:

final configuration.

Figure 13: Scale aspect with high c: Hull effect (with interior and exterior

markers). Left: Final state. Right: Shape and markers. Parameter: c = 8.

For this example, the marker rule is not set.

Figure 14: Secondary geometrical scale aspect of h. From left to right, then

top to bottom, h increases in a ratio-2 geometrical manner from h = 0.0078

to h = 0.996. c = 8.

Figure 15: Multiscale segmentation in one-pass in the case where c = 8. The

top insets show the marker and the starting configuration (right) composed

of four parts separated by 11 nodes vertically and 15 nodes horizontally and

the final state (left). The resulting fuzzy segmentation is obtained, from left

to right then top to bottom, for h = 0.35, h = 0.5, h = 0.7 and h = 0.996.

Figure 16: Grey level segmentation of the noisy regions “background between

columns” and “right cheek”, starts with small markers. From left to right
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and top to bottom : Original image; binary results showing the detection of

the background and the right cheek; these two regions isolated in the origi-

nal image; distribution of the markers (one of the two markers can be seen

in the background) and of the diffusive parameter Dn,m calculated with eq.

(15).

Figure 17: Scheme of the mixed-signal architecture.

Figure 18: Analog network.

Figure 19: Detail of the analog network.
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