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Abstract: We present a new potential field equation for self-intersecting Gielis curves with rational rotational symme-

tries. In the literature, potential field equations for these curves, and their extensions to surfaces, impose

the rotational symmetries to be integers in order to guarantee the unicity of the intersection between the

curve/surface and any ray starting from its center. Although the representation with natural symmetries has

been applied to mechanical parts modeling and reconstruction, the lack of a potential function for Rational

symmetry Gielis Curves (RGC) remains a major problem for natural object representation, such as flowers

and phyllotaxis. We overcome this problem by combining the potential values associated with the multiple

intersections using R-functions. With this technique, several differentiable potential fields can be defined for

RGCs. Especially, by performing N-ary R-conjunction or R-disjunction, two specific potential fields can be

generated: one corresponding to the inner curve, that is the curve inscribed within the whole curve, and the

outer -or envelope- that is the curve from which self intersections have been removed.

1 INTRODUCTION

Describing and modeling nature is fascinating and,

generally speaking, one of the most fundamental re-

search activities: whether to model physical behav-

iors or geometric structures, to describe or to recog-

nize natural shapes, every research community aims

at representing nature as accurately as possible. Clas-

sical models are largely based on isotropic spaces

with the Euclidean circle as (isotropic) unit circle.

In nature however, anisotropy is the rule and dif-

ferent ways of measuring or geometrizing exist. In

2003, halfway between the fields of botany and com-

puter graphics, Gielis et al. introduced the superfor-

mula (Gielis, 2003; Gielis et al., 2003), which can

be seen as a parametric formulation for generalized

circles or ellipses. Superellipses defining anisotropic

unit circles led to notion of Minkowski distances and

Minkowski geometry (Thompson, 1996). Superel-

lipses have been extended to superquadrics in (Barr,

1981), which have found numerous applications due

to the limited number of shape parameters and their

ability to represent objects ranging from diamonds,

cubes, spheres, and any intermediate shape. More

interestingly, the superformula is now spreading to

other fields. For instance, it has been used in re-

cent work to study constant mean curvature surfaces

for anisotropic energies (Koiso and Palmer, 2008), in

clustering and data mining in (Morales and Bobadilla,

2008), and in fluid dynamics in (Wang, 2008). Re-

cently, Natalini et al. have presented a numerical

algorithm to write down the explicit solution to the

Dirichlet problem for the Laplace equation in a star-

like domain (Natalini et al., 2008), and presented

closed form equations for various Gielis curves.

In 2005, based on the parametric formula pro-

posed in (Gielis, 2003), potential fields for 3D

Gielis surfaces have been proposed in (Fougerolle

et al., 2005). This representation has found appli-

cations for Gielis surface recovery for mechanical

parts (Bokhabrine et al., 2007). Unfortunately, one

of its major weakness is that the implicit field equa-

tions require the rotational symmetries to be integers.

Such a restriction can be tolerated when manufac-

tured objects are represented. Unfortunately, as ini-

tially remarked in (Gielis, 2003), some natural objects



(a) (b)

Figure 1: a) Rose sepals. b) RGC with m = 5/2 and n1 =
n2 = n3 = 0.43.

require the rotational symmetries to be rational num-

bers. Such symmetries are found in the phyllotaxy

of plants. Leaves are arranged in a helical or spiral

way around the stem. In rose, leaves are arranged

around the stem in a 5/2 arrangement, meaning that

the sixth leave will be precisely above the first one and

the spacing between leaves is 144◦. In wild roses the

five petals are arranged in a plane, but the sepals in

the preceding (almost planar) whorl still show the he-

lical arrangement as they are still 144◦ apart. This ar-

rangement can be seen using m = 5/2 in the superfor-

mula. It involves fusion of certain parts, while in the

center an open structure is created, giving rise to the

rose hip, as illustrated in Figure 1. Non-integer sym-

metries can be observed in biomolecules as well, e.g.

DNA and proteins in which non-integer symmetries

are observed frequently (Janner, 2001; Janner, 2005).

Complex objects that are defined as Boolean opera-

tions between multiple globally deformed Gielis sur-

faces can be modeled and reconstructed (Fougerolle

et al., 2005; Bokhabrine et al., 2007). To transcribe

the Boolean predicates between 3D Gielis surfaces

into analytical equations, R-functions have been em-

ployed. The strategy adopted in this paper uses the

same tools and concepts, i.e. we use radial dis-

tance functions to build a 2D potential field, and R-

functions for the transcription of Boolean combina-

tions into analytical equations. The difference is that

now we perform R-functions not to combine implicit

fields of several Gielis curves or surfaces, but the

multiple implicit values of the same rational Gielis

curve. Thus, we overcome the self-intersection issue

through an auto-R-function operation and build 2D

potential fields equation for RGCs, that can represent

for instance the envelope of the curve or its ”core”.

We present several advantages of this representation,

ranging from flower modeling, from global shape to

petals, and its potential for further research directions,

such as parameter recovery and/or optimization.

The structure of the rest of paper is as follows: in

section 2 we recall the initial parametric definition of

Gielis curves, surfaces, and their associated potential

fields. In section 3 we briefly present R-functions.

Using R-function and the initial Gielis formula, two

potential fields are presented for 2D RGCs in sec-

tion 4. Several strategies about extension to Rational

Gielis Surfaces are presented and discussed in section

5. We then present our future work and conclusions

in section 6.

2 GIELIS CURVES

In polar coordinates, the radius r(θ) of a Gielis

curve is defined by:

r (φ) =
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with ni ∈ R
+, and a, b, and m ∈ R

+
∗ . Parameters a

and b control the scale, m represents the number of

rotational symmetries, n1, n2, and n3 are the shape co-

efficients. Regular polygons and superellipses can be

generated by setting the shape coefficients to specific

values as shown in (Gielis, 2003).

Gielis only proposed the parametric formulation

for 2D curves. In the case of closed non self-

intersecting curve (m is positive integer), for a 2D

point P(x,y) one can define the following potential

field:

F1(x,y) = 1−
‖
−→
OP‖

‖
−→
OI‖

= 1−

√

x2 + y2

r2(θ)
. (2)

O is the center of the curve, and the point I =
r (θ(x,y)) corresponds to the intersection between the

curve and the half line [OP). If the symmetry param-

eter m is an integer, the intersection I is unique. If the

curve is closed, the sign of the potential field F(x,y)
generated by equation 2 can be used to define a par-

tition of the 2D space. In this case, the set of points

where F(x,y) is positive corresponds to the inside of

the Gielis curve, the set of points where F(x,y) is neg-

ative corresponds to its outside, and the curve corre-

sponds to the zero-set of the potential field.

In (Fougerolle et al., 2005), by setting a = b = 1 in

equation 1 and by considering a 3D Gielis surface as

the spherical product of two 2D Gielis curves, poten-

tial fields for 3D non self-intersecting Gielis surfaces

have been introduced as:

F2 (x,y,z) = 1−
1

r2(φ)

√

x2 + y2 + z2

cos2 φ
(

r2
1(θ)−1

)

+1
. (3)

Such representation of Gielis surfaces as iso-values

of a potential field is crucial for Gielis surface recon-

struction from 3D data, because it is used to build var-

ious cost functions to be optimized.



3 R-FUNCTIONS

R-functions find their origin in geometric algebra

based on logic and have been introduced by Vladimir

Logvinovich Rvachev in (Rvachev, 1967). Since

their introduction, R-functions have found direct ap-

plications in several fields, such as geometric mod-

eling and boundary value problems. For concise-

ness purpose, we briefly present the most common R-

functions in this section. The reader is invited to refer

to the recent survey by Shapiro (Shapiro, 2007) for

more in depth presentation of R-functions and their

applications.

The simplest R-function is Rα(x1,x2) and is de-

fined by:

Rα(x1,x2) =
1

1+α

(

x1 + x2 ±
√

x2
1 + x2

2 −2αx1x2

)

,

(4)

where α(x1,x2) is an arbitrary symmetric function

such that −1 < α(x1,x2) ≤ 1. Setting α to 1 leads

to the simplest and most popular R-functions:

R-conjunction min(x1,x2) and R-disjunction

max(x1,x2). Other useful R-functions with dif-

ferential and normalization properties, namely

Rm
0 and Rp, are studied in detail in (Shapiro and

Tsukanov, 1999), and are respectively defined by:

Rm
0 (x1,x2) =

(

x1 + x2 ±
√

x2
1 + x2

2

)

(

x2
1 + x2

2

)

m
2 ,

(5)

where m is any even positive integer and

Rp(x1,x2) = x1 + x2 ±
(

x
p
1 + x

p
2

)
1
p , (6)

for any even positive integer p. Rα, Rm
0 , and Rp func-

tions only handle two arguments. Rvachev introduced

the N-ary R-conjunction and R-disjunction to handle

more than two arguments, which are less restrictive

than Rα, Rm
0 , and Rp and more appropriate to RGCs.

The parameter m is an integer and corresponds to the

parameter used for Rm functions.

i=n
∧

i=1

(m)

xi ≡
n

∑
i=1

(−1)m
xm

i (xi−|xi|)+
n

∏
i=1

xm
i (xi + |xi|) .

(7a)
i=n
∨

i=1

(m)

xi ≡
n

∑
i=1

xm
i (xi+ |xi|)−

n

∏
i=1

xm
i (−1)m (|xi|− xi) .

(7b)

If no specific constraint about differentiability is re-

quired, m can be set to zero, which leads to the

simplified version of N-ary R-conjunction and R-

disjunction defined in equations 8a and 8b.

i=n
∧

i=1

xi ≡
n

∑
i=1

(xi−|xi|)+
n

∏
i=1

(xi + |xi|) . (8a)

(a) (b) (c) (d)

Figure 2: Examples of developing flower buds. a) Ochna at-
ropurpurea: Development of ovary. b) Greyia sutherlandii
stage 1: sepals protect the newly formed petals. c) Greyia
sutherlandii stage 2: stamens develop with petals in the five
corners of the pentagon (sepals removed). d) Greyia suther-
landii stage 3: stamens and pistils develop.

i=n
∨

i=1

xi ≡
n

∑
i=1

(xi+ |xi|)−
n

∏
i=1

(|xi|− xi) . (8b)

An R-function is a real-valued function character-

ized by some property that is completely determined

by the corresponding property of its arguments. More

specifically, the R-functions presented in this paper

have the property that their sign is completely deter-

mined by the signs of their arguments. In the follow-

ing section, we present how to use this property to

build a signed potential field for RGCs.

4 POTENTIAL FIELD EQUATION

FOR RATIONAL GIELIS

CURVES

While RGC curves with multiple crossings and

period k (with k even) can be studied in a XY graph

without intersections, it is worthwhile to develop a

potential field function which does take the intersec-

tions into account and in which multiple function val-

ues do occur. As observed in rose, such intersec-

tions could indeed give rise to a center which can

develop into the rose hip. Alternatively, the multi-

ple intersections can lead to the separation of specific,

isolated sectors in which separate developmental pro-

cesses may occur. Such sectors are indeed observed

using R-conjunction of outer envelope and the com-

plementary of the core (Figure 5). At the bud stage,

flower development involves the sequential initiation

of various whorls in well-defined yet separated sec-

tors. In Greyia sutherlandii (Figures 2(b), 2(c), and

2(d)) for example, after the formation of sepals in the

’corners’ petals are formed and inbetween the forma-

tion of stamens occurs.

We come back to the superformula initial formu-

lation and introduce rational symmetry: the symmetry

parameter m is no longer an integer and can be ratio-

nal, and a = b = 1. By definition, RGCs are self inter-



Figure 3: Intersections between a RGC with m = 8/3 and a
half ray.

secting curves, i.e. the symmetry parameter m can be

written as the ratio of two integers as m = p/q. The

parametric formulation of a RGC is then written as:

r (φ) =
1

n1
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∣
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pφ
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with p,q ∈ N
+
∗ . The parameter p is similar to m,

i.e. still represents the rotational symmetry number.

The parameter q corresponds to the maximum num-

ber of self intersections, and the angle θ now belongs

to [0,2qπ]. The condition for a RGC to be closed is to

verify that the radius r(θ) is identical for angles θ = 0

and θ = 2qπ, which can be written as r(0) = r(2qπ).
Figure 3 shows an example of a RGC with p = 8

and q = 3. For a given RGC, there exist multiple in-

tersections between a ray originated from its center

and the curve, i.e. there exist multiple polar coordi-

nates in [0,2qπ] that generate points lying both on the

curve and the ray, as illustrated in Figure 3, where

three intersections, noted I1, I2 and I3 are detected.

The number of intersections depends on q and double

intersection points appear for angles θ = kp/q. For a

given point P(x,y), a first angle θ0 within [0,2π] can

be easily determined. The corresponding intersection

point I0 can be computed as r(θ0). Other angles θk

and corresponding intersection points Ik can easily be

determined using θk = θ0 + 2kπ and Ik = r(θk). We

see that the several intersections can be simply com-

puted and correspond to the multiple values of the ra-

dius for θ0 + 2kπ values. For each intersection point

Ik, equation 2 can be applied to associate a potential.

Now, the last problem to overcome is to build a

continuous potential field from these k individual po-

tentials. One of the simplest idea is to consider the

maximum or minimum potential determined for in-

tersection points Ik using equation 4 with α = 1. This

approach generates a potential field that is not smooth

everywhere, as illustrated in Figures 4(b),4(d), 4(f),

4(h), ??, and ??, that have been obtained using min

and max R-functions. Therefore, such a technique

suffers a severe drawback, especially for reconstruc-

tion purposes, where differentiable functions are often

preferred. To obtain a differentiable potential field,

we can combine each potential using R-functions pre-

sented in equations 5 or 6. Using Rp may be an ad-

vantage if normalization property is desired, but it

also has a major drawback. With Rp-functions, the

generated potential field depends on the order the R-

functions. Indeed, for instance, it is easy to verify that

(x1∧x2)∧x3 6= x1∧(x2∧x3), except over its zero-set.

Unicity of the potential field can be obtained using

two techniques: sort individual values or restrict the

q parameter to be set to 2 to keep binary R-functions,

which is not satisfactory in both cases. Fortunately,

for multiple self intersections, n potential values can

be combined using n-ary R-functions as defined in

equation 7. The justification for the introduction of

equations 8a and 8b now clearly appears: using bi-

nary R-functions, such as Rα, Rp or Rm, restricts the

parameter q in equation 9 to be equal to 2, whereas

with N-ary R-functions q ∈ N
+
∗ . The commutativity

of N-ary R-functions is obvious since these functions

are a sum of sums and products that are commutative.

Eventually, by replacing the arguments of equa-

tions 8a and 8b by the potential field defined in equa-

tion 2, we obtain the inner and outer potential fields

for 2D-RGCs, respectively defined by:

i=q
∧

i=1

F1(xi,yi) and

i=q
∨

i=1

F1(xi,yi), (10)

where F1(xi,yi) corresponds to the potentials evalu-

ated for the multiple intersection points (xi,yi) using

equation 2 combined through N-ary R-conjunction

and R-disjunction, respectively. Figure 4 illustrates

the relative intensity of the potential field for various

RGCs and several R-functions.

Additionally, the inner and outer potential fields

can be combined together, for example to represent

developmental processes in flowers. For instance, one

can want to perform the equivalent of the Boolean dif-

ference between the inner and outer curve, simply by

using binary R-functions, as illustrated in Figure 5.

Such a representation finds direct biological meaning:

when a plant goes into flowering, the flower approxi-

mately becomes a planar structure, going from a spiral

phyllotaxy (given by Fibonacci numbers) into a planar

phyllotaxy or still with helical or spiral tendencies.

But in a meristem of the flower, new entities have to

develop sequentially (first sepals, followed by petals,

stamen and finally pistil). This means that in a pla-

nar arrangement a clear separation of areas/sectors is

necessary, as delineation of potential fields. And that

is precisely what distinguishes Figures 4 and 5. This

illustrates the potential of our approach to build from

bottom up (pure R-functions/logic, with RGC) a way

of modeling flowers. This example also illustrates the



(a) using
Eq.8b

(b) using Rα (c) using
Eq.8a

(d) using Rα

(e) using
Eq.8b

(f) using Rα (g) using
Eq.8a

(h) using Rα

Figure 4: Color coding of relative intensity of the potential
field generated by auto R-function of a RGC with a = b = 1,
n1 = 0.5, n2 = n3 = 3.5, p = 5. The RGC is in dark red.
First row: m = 5/2. Second row m = 5/3. From left
to right: relative potential field intensity using the N-ary
R-disjunction, Maximum, N-ary R-conjunction, and Mini-
mum.

strength of our approach, thanks to R-functions, be-

cause such sectors may not be represented using Na-

talini’s approach.

(a) p = 5,q = 2 (b) p = 5,q = 3 (c) p = 5,q = 4

(d) p = 5,q = 2 (e) p = 5,q = 3 (f) p = 5,q = 4

Figure 5: R-conjunction between a RGC outer envelope and
the complementary of its inner envelope to represent vari-
ous petal shapes. First row: using Rp-function. Second row:
using Rα.

5 EXTENSION TO RATIONAL

GIELIS SURFACES

We present two approaches to extend RGCs to Ra-

tional Gielis Surfaces (RGSs). The first one is using

spherical product, and the second is building revo-

lution surfaces using a RGC and a profile. The ob-

(a) (b)

Figure 6: Rational Gielis Surfaces. a) Spherical product. b)
Revolution surface.

jective of 3D extension through spherical product is

to generate a closed surface built upon two Gielis

curves, which can be used in solid modeling for ex-

ample. This operation requires one important restric-

tion: the second generating curve cannot be ratio-

nal. The main problems arising when considering

a RGC as second generating curve are surface gen-

eration/continuity and potential field evaluation. In

spherical product, half of the second curve, that cor-

responds to angles φ ∈ [−π
2
, π

2
], is rotated around the

rotation axis of the first generating curve. In this case,

the 2qπ modulus to evaluate every intersection leads

to curve discontinuities, which is a major problem

for efficient and simple tesselation algorithms and po-

tential field evaluation. Thus, one solution to build

closed surfaces while preserving surface continuity

and signed implicit field definition, is to perform the

spherical product between one RGC with one GC.

The implicit field generated can then be evaluated by:

i=q
∧

i=1

F2(xi,yi) and

i=q
∨

i=1

F2(xi,yi), (11)

where F2(x,y) is the potential equation for 3D

Gielis Surfaces presented in equation 3. An example

of a mesh corresponding to such surface is illustrated

in Figure 6(a).

The second approach consists in defining a pro-

file, by any known techniques such as NURBS for

instance, and to use this profile as an elevation pro-

file. In this case, the surface created does not define

a closed object, which makes impossible the expres-

sion of an implicit field. Nevertheless, such represen-

tation may be very useful for compact and efficient

representation of elementary 3D flower patterns, es-

pecially in entertainment or video-game industry. An

example of a revolution surface using RGC, using a

cubic polynomial profile, is presented in 6(b).



6 CONCLUSIONS

We have presented new potential functions for

closed Rational Gielis Curves and possible strate-

gies for their extension to 3D surfaces. Our ap-

proach makes use of R-functions to overcome the

self-intersections issue introduced by the rational ro-

tational symmetry. With this technique, several dif-

ferentiable potential fields can be defined for RGCs

and, more specifically, one corresponding to the in-

ner curve, that is the curve inscribed within the whole

curve, and one corresponding to the envelope. Such

representation offers promising perspectives, espe-

cially in botany with classification and morphology

metrics: as illustrated in Figure 5, combining inner

and outer potential fields through R-functions leads

to the definition of sectors that are directly related to

the flower developmental process.

Among the numerous other research directions,

we consider the study of other possible 3D extensions

and their applications to solid modeling, boundary

value problems, and/or entertainment (fast 3D flower

modeling and rendering, procedural flower field tex-

ture generation, etc). Another still highly challeng-

ing research concerns the shape and symmetry pa-

rameters recovery. To our knowledge, in the lit-

erature, there still exist very few papers dedicated

to Gielis curves parameters recovery using integer

symmetries, and none considering rational symme-

tries. The introduction of potential equations for such

closed curves therefore opens new research perspec-

tives in this field. Moreover, due to the complexity of

the space parameters, deterministic methods, such as

Levenberg-Marquardt method, can only be applied in

restricted cases, with prior symmetry detections and

strong assumptions. Our current and future works

include the development of more suitable RGC po-

tential functions for optimization processes combined

with the study of appropriate stochastic algorithms for

efficient RGCs parameters recovery and their applica-

tion to classification, pattern recognition, and object

segmentation both in 2D and 3D.
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