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A Constrained Band Selection Method Based on
Information Measures for Spectral Image Color
Visualization

Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Y. Hdrdrg

AbstracfWe present a new method for the visualization of neighboring spectral channels are highly correlated, éienc
spectral images, based on a selection of three relevant spet  |arge amount of unnecessary redundancy. For these reasons,
channels to build a Red-Green-Blue composite. Band seleati dimensionality reduction is a very common processing. It

is achieved by means of information measures at the brst, ists of reducing th b f band that onl f
second and third orders. Irrelevant channels are preliminaily ~ CONSISIS Of reaucing theé number of bands so that only a Tew

removed by means of a center-surround entropy comparison. A elevant ones are kept to represent the whole image. Tips ste
visualization-oriented spectrum segmentation based on thuse is often referred to ageature extractionand is achieved by
of color matching functions allows for computational ease ad  combining the original channels according to an informatio
adjustment of the natural rendgrlng. Results from the propcsed preservative criterion whose debnition is usually apfitica
method are presented and objectively compared to four other S -
dimensionality reduction techniques in terms of naturalness and related'. If th? Comb'nat'on IS I'r_]ear and made under the
informative content. constraint that its weighting coefbcients arg )1}, one talks

- . . o aboutband selectionIn this particular case, the reduced set is

Index Terms\Multi/hyperspectral imagery, Visualization, L )

Band Selection, Information Measures, Spectrum Segmentian, & SUb_SEt of the original oquand Selgctlons oﬂen prefg_red
Color Matching Functions since it allows for a better interpretation of the dimensiity
reduction by keeping the physical meaning of the spectral
channels. In this paper, we consider the general applitatio

. the visualization of spectral images by means of a tri-stirsu

Most of todayOs visualization devices are based on Hsed display device such as a standard computer screen.
paradigm that a combination of three primary colors (recthus, our framework is restrained to an N-to-3 dimensiayali
green and blue) is sufpcient for the human eye to charaeterféduction dedicated to the human perception.
any color [1]. However, in many applications such as remote
sensing, medical or art imaging, measuring the electromagive propose a new band selection method in three steps:
netic properties of a scene has to be made with high spectsat, irrelevant bands are excluded by comparing each chan-
precision. Analogously to the need for a high spatial retsmiu nelGs entropy with that of its close spectral neighborhood.
for an enhanced separation of the different elements ofreesceThen, the imageOs spectrum is segmented by thresholding
a high spectral resolution allows for a better estimationtf the CIE Standard Observer Color Matching Functions (CMF).
reBectance, and thus, a better characterization of iteQtrBventually, we use normalized information measures atrskco
color, regardless of the conditions of acquisition (illmation, and third orders to select the triplet of bands with minimal
camera). Multispectral imaging consists of acquiring moli@dundancy and maximal informative content. The proposed
than three spectral components from a scene, usually dozegshnique is referred to as Constrained Band Selection for
each one of them being captured in a small range of wavgsualization (CBSV), ! being a parameter that will be
lengths, for a better spectral precision (analogously taxelp |ater explained. We focus our study on two aspects: the
covering a small area of the space). Usually, spectral imagserceptual appeal(that we will refer to asaturalness and
are acquired in the visible range of wavelengths [400..@0] the informative content of the rendered composites. We
but it is also very common to cover the infrared range (beyorgil demonstrate that, although being contradictory in snan
700nm). Images with a number of channels ranging fromgases, these objectives can indeed be balanced, accoading t
hundred to a thousand are referred to as hyperspectral @ userOs need, either manually or automatically.
higher dimensionality datasets are called ultraspectral.

High dimensionality often goes along with high computa- The remainder of this paper is thus organized as follows:
tional burden, as well as some undesirable geometrical apgst, we review some related works on the topic of dimen-
statistical properties [2]. Moreover, it is well-known thasjonality reduction for spectral image visualization. &tson

. - . A 3, we give a brief background on entropy, mutual information

A. Mansouri and Y. Voisin are with the Laboratoire dOEleditpee In- . . .
formatique et Image, Universite de Bourgogne, Auxerrande. J. Harde- and review several N-order information measures. Then, we
berg is with the Norwegian Color Research Laboratory, Gjdvhiversity —present all the steps of the band selection approach. 8ectio
College, Gj¢vik, Norway. S. Le Moan is afpliated to both latiories. 5 presents the experimental framework and gives objective
(emails: {steven.le-moan, alamin.mansouri, yvon.vdig@u-bourgogne.fr, . .
jon.hardeberg@hig.no) results proving the efbciency of our approach. Severalaspe

Manuscript received July 13, 2010; revised May 25, 2011. of the methods are then discussed before conclusion.

|I. INTRODUCTION



[l. RELATED WORK combinations of the original spectral channels to create an
o ] ) ) enhanced representative triplet. The often mentioned -draw
Tri-stimulus representation of multi/hyperspectral ire89 5.k of this kind of approach is the loss of physical meaning
for visualization is an active peld of research that has begf,ched to a channel. That is. if initially, a spectral dis
thoroughly investigated over the past decades. One of s mg, jicitly linked to a range of wavelengths, what can be told
common approaches is probably the one referred WS 44t 4 combination of them? As previously explaineaid
color: It can baS|c_aIIy be achieved in two different ways: ONEe|ectionapproaches overcome this problem by preserving the
consists of selecting the bands at 700nm, 546nm and 4_36[]mjerlying physical meaning of the spectral channels, thus
(or the closest) and mapping them to the three primaries: Regying for an easier interpretation by the human end user.
and B, respectlvely. The other one uses the CMF-based bang}, [18], Bajcsy investigated several supervised and unsupe
transformation [3]. Even though it generally yields a Veryiseq criteria for band selection, including entropy, spsc
naturgl visual rendering, this approaqh does not take thee daerivatives, contrast, etc. Many signal processing tepies
itself into account at all, and thus noise, redundancy, &t€. | ,.e been applied to band selection: Constrained Energy
not accurately handled. ) ) ) Minimization and Linear Constrained Minimum Variance [19]
_ Another very common approach for dimensionality redugythogonal Subspace Projection (OSP) [20], [21] or the One-
tion is Principal Components Analysis (PCA), which has begsyt Transform (1BT) [22]. Also information measures based
extensively used for visualization purposes. ®wal. [4], o Shannon®s theory of communication [23] have been proven
investigated PCA for N-to-3 dimensionality reduction ib@ 14 pe very powerful in the identibcation of redundancy inthig
HSV color space. An automatic method to Pnd the origin @fimensional datasets. Mutual Information (MI) was brstduse
the HSV cone is also introduced in order to enhance the PR§{ hand selection by Conest al. [24]. In [25] and [26], two
color representation. Later, Tsagag al. [S] proposed 10 metrics based on Ml are introduced in the context of image
use the fact that the red, green and blue channels, as theysgegn evaluation. They measure how much information is
interpreted by the human eye, contain some correlatiorgtwhishared by the original and the reduced datasets. In [27]sMI i
is in contradiction to the underlying decorrelation enggned ;seq to measure the similarity of each band with an estimated
by PCA. For that reason, the authors proposed a constraingfbrence map. In [28], a normalized MI measure is used for
PCA-based technique in which the eigendecomposition of thgsrarchical spectrum segmentation. More recently, Gagio
correlgtlon matrix is forced with non-zero elemer_1ts_ in itg). proposed an Mi-based top-down band clustering technique
non-diagonal elements. Several other PCA-based vistializa [29].
techniques can be found in the literature [6], [7], [8]. To our knowledge, the use of third order information
_In order to alleviate the computational burden of the traneasures has not been investigated in the framework of band
ditional PCA, Jia et al. [9] proposed a correlation-basegblection yet. Along with a visualization-oriented speotr

spectrum segmentation technique so that principal commsnesegmentation constraint, these are the main contributins
are extracted from different segments and then used for vighis paper.

alization. Other segmented PCA approaches are invedfigate
in [10] including equal subgroups, maximum energy and
spectral-signature-based partitioning. ) ) ) ) )
In [11], Du et al. compared seven feature extraction 'S Section gives some background information about
techniques in terms of class separability, including pcéhannonOs mutual information and its generalizationg @ hi

Independent Components Analysis (ICA) and Linear Discrinf'ders. When these measures are applied to a spectral image,
inant Analysis (LDA). ICA has also been studied by zhil 1S general_ly considered '_[hat _each channel is equivateat t

et al. [12] for spectral image visualization. They used@ndom variable&X and all its pixels are events o .

several spectrum segmentation techniques (equal subgroup

correlation coefbcients and RGB-based) to extract thelBrstA. First and second orders

in each segment. The use of dh_‘ferent color spaces for mgppin Entropy and mutual information were prst introduced by
of PCs or ICs has been investigated by Zhatgl. [13]. Shannon [23]. In this part, we simply recall the formulas of
In [14], [15], Jacobsoret al. presented a band trans—(in the discrete case):
formation method allowing the CMF to be extended to the
whole image spectrum, and not only to the visible part. They
proposed a series of criteria to assess the quality of argpect
image visualization. Later, Cuat al. [16] proposed to derive
the dimensionality reduction problem into a simple convex H(X)="! Px (X) logp(px (X)) 1)
optimization problem. In their paper, class separabiliy i XEACX)
considered and manipulations on the HSV cone allow for wherex is an event ofX, !( X) is the ensemble of
color adjustments on the visualization. More recently, \&eeh possible values foX , px (x) is the probability density
proposed a method based on class-separability in the CIELAB of X andbis the order of the logarithm, usually set to 10.
space for improved spectral image visualization [17].
All the previously presented approaches can be referred to¢r the mutual informatiorbetween two random variables
asband transformatiortechniques inasmuch as they produce andY:

IIl. THEORETICAL BACKGROUND

¥ the entropyof a random variable& :
!



1(X:Y) = by (,y)log(2%r (X Y) AXIY;Z)= 1(XY[Z) 1 1(X;Y)

Px (X)-pyv (¥)

xex) =1 (X;Z]Y)! 1(X;2)
= H(X)+ H(Y)! H(X;Y) 2) = 1(Y;ZIX) P 1(Y;2) (6)

wherepxy (x,y) is the joint probability density of the It can also be written as a sum of entropies at all orders:

couple (X,Y ) and H(X,Y ) the joint entropy of the |

couple(X,Y). A(X:Y:Z)= ! ' H (i)
¥ Theconditional mutual informatiofetween two random h ﬁ;Y;Z} o
variablesX andY, knowing a third oneZ: + H(@,j)
j !I(!{ XX; \;(Y; 22}\} i
1(X;YIZ) = E(1(X;Y)IZ) (3) P HXY;2) (7)
whereE (.) is the mathematical expectation. More recently, Bell [34] proposed ttem-informationwhich

is identical to the interaction information, but with an agge
¥ The mutual information between two setf random Sign:

variables:
I1(X;Y;Z2)="1A(X;Y;2Z) (8)
(X1, X2,X3); (Y1, Y2)) = H(X1,X2,X3) A particularly interesting property of these measures & th
+ H(Y1,Y2) they can take both positive and negative values. If we look at

P H((X1,X2,X3);(Y1,Y2)) the Venn diagram in the last section, we naturally point bat t
(4)  center region as the third order redundancy. However, fsecau

The well-known Venn diagram allows for a good underof the very existence of the negative case, the Venn diagram

standing of these metrics, as shown in Figure 1. representation is no longer relevant at orders higher than
two. For the same reason, both aforementioned dePnitiens ar
correct, nevertheless, we bnd BellOs dePnition more lsuitab
and more intuitive for the following explanations.

In the case of positive co-information, we talk about redun-
dancy, whereas in the case of negative values, we talk about
synergy. Redundancies are foreseeable from lower orders
while synergies only appear when the random variables are
taken together. If we refer to equation 6, the synergy case

Figure 1. Venn representation of mutual information. Theehrectangles appears when. for instance(X .le) > | (X 'Y) that is
depict the entropy of a random variable each. The overlgspi®present ! . ! ! !
the information shared by several variables. The squared mpresents the When the knowledge of increases the dependency between
conditional mutual information (X ;Y |Z). X and Y. In order to explain this particular property, we
consider a simple XOR cell with two binary inputX, and
Y and an outpuZ = X " Y. If we consider the inputs
B. Third order as independent, the following stands trugX;Y) = 0. If
N . . we now introduce the knowledge @f, we also introduce the
Several generalizations of mutual information have been . T
u]nderlylng knowledge of the XOR relation linking the three

proposed n .the literature. In this se<_:t|0n, for purposes Variables. For instance, if we know that= 0, we can deduce
clarity, we will focus solely on the third order. However

extension to higher orders is quite straight forward. thatx = ¥, and, by this, we increase the dependency between

) . [ ; > 1Y)
Watanabe [30] introduced thetal correlation also known th?ﬂ'?ﬁgti;soe%?ts(xegrg i)mal gs( t\r(u)s finciole remains true
as multivariate constraint[31] or multiinformation[32]. It P ges, P P '

) : .Thle knowledge of one channel can increase the mutual infor-
is debned as the difference between the sum of marginal .. .
entropies and the ioint entropy of the set: mation between the two others and, in that case, the smaller
P J Py ' the co-information, the higher the shared information. réhe
! fore, in the context of minimizing the redundancy (gengrall
TC(X;Y;Z)= H(i)! H(X;Y;Z) (5) speaking) inside a set of random variables, the absolutesval

i X:;Y:Z} of co-information must be minimal.

The main drawback of total correlation lays in the fact that i
measures both second and third order, indiscriminateljiewh
favoring the second order. In this section, we describe the different stages of the

McGill [33] presented thénteraction informationwhich is CBSV, method: exclusion of irrelevant channels, spectrum
debned as follows: segmentation and band selection.

IV. PROPOSED METHOD



A. Exclusion of irrelevant bands between neighboring channels. In such a case, a large window

We propose to make a brst coarse selection allowing for tﬁig_e is_ prefered in order to reduce the inBuence of outliers.
removal of low informative channels. Multispectral imagedis yields a smoother local average curve, and also a less
are known to contain high redundancy between neighboriREECiSe analysis.” allows for adjusting how OstrongO the
bands and thus, channels that do not meet this depnit@fflusion will be (the lower, the stronger).
are considered noisy or poorly informative [35]. Either way
these bands can be excluded. Measuring the similarity by
means of second- order measures such as correlation orlmutua
information requires however a high computational burden,
since all the pairs of bands must be considered. Another way
of coarsely measuring similarity can be done by comparing
the intrinsic informative content of a band with that of its
neighbors. This can be achieved by means of a moving
average as local threshold [36], [22]. We propose to use
ShannonOs entropy as a measure of informative content. It (@) (b)
is computed for each channel, resulting in the solid curve fgure 3. Example of excluded bands: (a) num 5 (b) num 164. His¢

Figure 2 (for the OJasper RidgeO image see descriptioem irPRg falls below the relevance range because of its very loannvalue. The
next section) ! second one is rejected for it contains to much spatial noise.

In the case of the example image OJasper RidgeO, one can
notice steep curvature changes, hence our choice to usgea lar
window size § = 11). Moreover, since we brst aim at a
coarse band selection, we set the threshold to a moderaie val
(" = 10%). Figure 3 shows examples of excluded channels
for this image.

B. Spectrum segmentation

1) Principle: Spectrum segmentation aims at regrouping
spectral channels so that bands of a same segment are consid-
ered similar in some way, in order to alleviate the compatati
of the feature extraction. Usually, similarity is measuied
terms of shared information and groups are drawn contigu-
ously among the spectrum. We propose to measure similarity

Figure 2, Exclusion of irrelevant bands: entropy, localrage and thresholds in terms of human vision. At this aim, we propose to use
for Ithg gJafPETORidgzo image. Channels outside the rejtwsholds are the CIE 1964 Supplementary Standard Colorimetric Observer
excluded { = 10% ands = 11). Color Matching Functions (CMF) [37] which are descriptors
of the chromatic response of the human eye. The CMF are
usually used to linearly combine spectral channels intd-a tr
stimulus (XYZ, RGB) representation roughly matching the

The dotted line represents the local average, which
debned for a banB; as follows:

»

1 "§l 2# human perception of Red, Green and Blue [38]. In other
Hs(Bi)= = H(Bis) (9) words, each wavelength is associated with three weighting
S =g slon coefbcients corresponding to its contributions to the g@tion

with s representing the size of the neighborhood. Bands who%fethree primary colors. We propose to interpret this st

) . o AP
entropy is higher (resp. lower) than their local averagei@al as follows: ‘the higher the weighting coefbcieW( of a

moderated by the thresholding factoare then considered asﬁihahnenretlrlle#rel[(]e-\'/.gn]cénfc;tr\]/% tc(;)?é)c;negg d#ie{ Fe;sgr;lg}{i{/ethi
irrelevant. Thus, if a banB; reaches the condition in equatio 9 ! 9 b o

o nConsequently, we propose to cluster the CMF coefbcients int
10, it is excluded. L A
two classes, by means of a binarizing threshol@oefbcients
) ) " ) " above! depict the relevant wavelengths for band selection.
H(B:) # [Ms(B:) $(1001 "); Hs(B)) $(100+ )] (10) We note the ensemble of the corresponding chanBel,
With *, the thresholding parameter, given in percentage# { R,G,B}.
Both the size of the window and the thresholds have to be selLet us now consider the common case of spectral image
according to the smoothness of the entropy curve. Indeed, thnging outside the visible range of wavelengths (400-%)0n
smoother the latter, the lower the probability to have @avaht Indeed, the CMF are designed only for this part of the
bands and, accordingly, the smaller the amount of channelsctromagnetic spectrum. As a solution to this, Jacoleton
that fall outside the range of relevance. In that case, small [14] proposed to stretch the CMF so that it covers the entire
value of" ands are advised in order to gain in precision. Ofimage spectrum, no matter what wavelengths it ranges irs Thi
the other hand, a sharp-shaped curve implies strong diffese stretched CMF principle is illustrated by Figure 4, for arage



covering the range [300..1000] nanometers. In the case oR) Automatic thresholding:Setting the parametdr may

a non-constant spectral sampling step, that is, for exampbe quite challenging, especially in the absence of a specibc

when bands have been removed by the previous step, eitherdpplication. As will be seen and discussed in the results

lacking channels must be replaced by interpolation methodgction, a manual setting allows to subjectively modetage t

or the CMF coefbcients must be adjusted. For computatiomaltural aspect of the result, but there is no guarantee to bnd

ease, we recommend the latter solution. a general optimum. What we suggest here is to empirically
bPnd a suboptimal solution based on a maximization of the
number of discarded channels. Indeed, as explained in the
previous section, not only does this step provide a relevant
spectrum segmentation, it also allows to discard a certain
amount of channels prior to band selection. Therefore, we
propose to debne the best thresholding as the one maximizing
the amount of discarded information, under the constraiait t
the latter must always be inferior to the amount of preserved
information. As a measure of informative content, we have
used ShannonOs entropy. ISt be the set of channels
removed by thresholding the CMF with and letS;" be its
complementary set. Then this pseudo-optitas given by
the following equation:

| = $ $ +
Figure 4.  The stretched CMF principle: In strong colors, traginal "p$ opt = arg !max Card(S7) w.tc. H(SP) <H (S')

functions. In light colors, the same ones stretched to Ptrgetarange of ] ] )
wavelengths. We note two partlcular situations:

. i ¥ If H(S?) > H (S/) with Card(S}) = 1, the default
Eventually, three segments are obtained, depending on the \,5,e is set to 0. '

binarization thresholdSed;, Sed, andSed; in which the  , | (SP) < H (S') for every!, then the default value
band selection for the red, green and blue primitive channel g get to 1. '
will be performed, respectively. Consequently, for a groyvi

value of!, the size of segments gets smaller and: Let N be the dimensionality of the image amttor its

overall entropy. The curves on Figure 6 show the evolution of

l1>1, % Seq? # Sed',&#{R,G,B} (11) % for all the datasets described in section V.A.

The spectrum segmentation is performed using normalized
functions so thatmax; (W,") = 1,&P. Figure 5 illustrates the
technique as well as the role bf

Figure 6. The proportion of discarded entropy in regard$ to

The crossing of the red dotted line indicates that the
Figure 5.  The spectrum segmentation. The curve represtetsed discarded information is higher than the remaining onef tha
CMF, normalized between 0 and 1 and stretched between 3001800 |s, the pseudo-optimal thresholding value according to the

nm. Extremum values have been removed for clarity. The boté lines . P .
represent two cases of spectrum segmentation, oné fof .2 and another aforementioned criterion (dep|Cted by red SpOtS).

for " = 0.7. In both cases, the grey segments highlight the removakarea
while bands in the orange zones are kept. C. Band selection algorithm

We note two particular cases :lifis set to0, the hypothesis ~ The dimensionality reduction of the multispectral image
is rejected and band selection is totally unconstrained. @St be carried out by optimizing two criteria:
the contrary, ift = 1, the hypothesis is considered perfectly ¥ The informative content of the reduced dataset, which
relevant and there is no need to proceed with band selection has to be maximal.
since, in that case, the size of each segment is reduced to 1y Its intrinsic redundancy, which has to be minimal.



Hence the need for a metric measuring both quantities. An Data sets

[28], the authors used a normalized version of mutual infor- ggr our experiments, we used four different reRectance
mation that we propose to generalize for co-information anghtasets which are now presented:

higher order information measures. We debnektth order
Normalized Information (NI) of the bands&t= {B, .., Bk}
as the following quantity:

¥

k' 1(S)

i
H(Bi)
1

¥

NI (S) = (12)

Because a direct search for the best triplet of bands
Bred s Bgreen » Boie Would require a very high computational
time, we propose to proceed iteratively, by using an algorit
similar to the one used in [21]. First, the Red and Blue
primitive channels are sought as the most dissimilar coaple
bands in the ensembleegs ' Segs. This choice is guided
by the fact that the couple R,B presents more orthogonalityy
than any other couple in R,G,B, a property that is suggested
by the very shape of the CMF and by the way they overlap
along the spectrum. Then, the Green channel is selected as

OJasper RidgeO is a well-known 220 bands hyperspectral
image from the AVIRIS sensor [39]. 5 classes were
considered: water, road, urban area (houses), and two
types of minerals.

O0sloO is a 160 bands remote sensing hyperspectral
image, representing a urban area in the neighborhood of
Oslo (Norway). It was acquired with the HySpex VNIR-
1600 sensor, developed by the Norsk Elektro Optikk
company. The sensor ranges from the early visible
(400nm) to the near infrared (1000nm) with a spectral
resolution of 3.7 nm. More information can be found on
the constructorOs website [40]. We considered 5 classes
in this image: vegetation, road, roof tops (two kinds) and
cars.

OsSarcophagusO is a 35 bands multispectral image rep-
resenting a portion of &9 century sarcophagus from
the St Matthias abbey in Trier, Germany [41]. It was
acquired by means of a 8 channels blter wheel camera

the one minimizing NI (Breq, Bk, Boiue )| The procedure is
detailed in algorithm 1.

Algorithm 1 Band selection
i=0;k =1,
randomly choos¢ so thatB; # Sed;
iterations = O;
while (i !'= k) and (iterations< 20) do
if iterations is everthen
= Seg;;
else
= Sed;
end if
Pndtemp = argmin [NI2(B;, Bk)] with Bx # ! ;

Qi (kK temp;

iterations++;
end while
if iterations is everthen
Bred = By
Bpiue = Bj;
else
Breda = Bj;
Bpiue = Bk;
end if

Pndk = argmin [NI3(Bred, Bk, Boie )| With B¢ # Seg;.
K
Bgreen = B

V. EXPERIMENTS AND RESULTS

In this section, we Prst present the datasets, the metrics as

well as the other techniques used for comparison. Compu
tional consideration are then briel3y tackled before prisgn

ranging only in the visible spectrum (400-740nm). A
supervised neural-network-based refRectance estimation
algorithm allowed for an enhancement of the sampling
step to 10 nm. In this image, we considered solely the 24
patches of the MacBeth CC target for pixel classibcation.
OFlowersO is a 31 bands multispectral image from the
database used in [42]. Three classes are present on this
image: Bower, leaves and background.

Each refRectance dataset has been normalized so that it
ranges in[0..1] before dimensionality reduction and the rep-
resentations are depicted here in their raw form in order to
allow for a fair visual comparison. Only lightnesses haverbe
equally increased in all the following bgures in order tatdret
the readableness of this document. Figure 7 depictgrtiee
color representations of the datasets. They have been com-
puted by means of the standard CMF-based transformation,
after removal of irrelevant channels (see section IV.A) and
without atmospheric correction.

B. Metrics

Two criteria have been used to assess the efbciency of the
methods:

¥ the natural rendering of the composites. Subjectively
measuring the naturalness of an image is really chal-
lenging since there is no exact debnition for it, even
though there have been some attempt to debne it in
a statistical manner [43]. In this study, we propose
to make the assumption that tteie color CMF-based
transformation yields a reference image for naturalness.
Consequently, the more natural an image is, the closer (in
a perceptual fashion) it is to itsue color representation.
Thus, naturalness has been measured by computing the
average euclidean perceptual distances of the resulting
images with their respective CMF-based Otrue color®

ta-

results both before and after spectrum segmentation, for a representation. This metric is hereby referred ta\&s

thorough comparison. The inBuence!ofs then discussed.

(Natural Rendering).



nent, we have used the following mappirgC; % V,
PC, % H,PC3; % S.

D. Computational considerations

The histogram estimation involved in the entropy compu-
tation can be optimized by selecting the adequate number
of bins. If a channelOs pixels are represented by one byte
each, it is pointless to take more than 256 bins, however,

(a) (b) we can choose a lower nhumber to improve the computational
efbciency without changing the accuracy of the measure. In
this paper, all entropy computations have been achieved wit
32 bins with no signibcative difference on the results.

E. Comparison prior to spectrum segmentation

In this section, we focus on the evaluation of dimensiopalit
reduction techniques applied on raw data, that is, prior to
spectrum segmentation.

(c) (d) Figure 8 shows the obtained composites for each dataset by
Figure 7. OTrue colorO representations of the dataset€Jgaper RidgeO Means of PCA, OSP, 1BT and CB&VIn order to obtain a
(b) OOsloO (c) OSarcophagusO (d) OFlowersO fair comparison with the OSP method, each dataset has been

spatially subsampled by a ratio of 1:100 before dimensignal

) ) ] ) reduction. Tables | and Il give the corresponding values of
¥ The visual informative content, which has been mea-poth NR andICPD.

sured by the average inter-class perceptual distance, as

suggested by Det al. [11]. At this aim, we have manu- _ PCA | OSP | 1BT | CBSV,
ally selected 20 pixels by class, in each image. Then, OlJasper RidgeP60.21 | 64.32| 54.01 | 44.23
h cl troid has been computed and projected 00slo0 07231 51001 033 741
each class centroid P proj OSarcophagusQ 3111 | 24.32 | 37.76 | 26.14
in a perceptually uniform color space. The euclidean OFlowersO | 38.22 | 31.40 | 32.12| 20.39
distances between each couple of centroids have then Table |
been averaged. This metric will be referred tol@®D NATURAL RENDERINGS
(Inter-Class Perceptual Distance).
For both metrics, we have projected the RGB data into the _ TC | PCA | OSP | 1BT | CBSVo
L*a*b* color space, by assuming a D65 illuminant. We used Olasper Ridgeb 17.74 | 26.18 | 26.33 | 30.67 | 40.44
a lor space, by g - OO0slo0 1962 | 2522 | 23.02 | 23.63 | 23.77
the following ranges: L*# [0..100} a* # [! 110.110]and b* OSarcophagusp 39.91 | 35.00 | 47.27 | 28.39| 41.70
# [ 110.110] OFlowersO | 104.95 | 137.00 | 87.78 | 88.29 | 118.00
Table Il

. INTER-CLASSPERCEPTUALDISTANCES
C. Benchmarking methods

We propose to compare our approach with four other High color differences are observed between the resulés, an
methods. particularly, hue differences. For instance, on the OQsteO

¥ The OSP-based band selection (OSP) [21] which consisige, one can notice blue-, red-, yellow- and even orangeetin
of progressively selecting the channel which is the mostnderings. This shows how numerous are the possibilities
orthogonal to the group of bands already selected. Duewden it comes to visualizing spectral images, and illussat
the high memory requirements of this method, a spatitiie need for a common reference, namely the naturalness.
subsampling is necessary. According to Bual, the On the brst two datasets, the 1BT-based band selection
subsampling rate can be chosen as high as 1:100 (ongmposites contain more spatial noise than the others ¢gke r
1% of the pixels are kept) without affecting the resultgixels on the AVIRIS image). It seems fair to assume that the
This rate has been applied in this study. information measurement on which is based this technique

¥ The 1BT-based band selection (1BT) [22]. The one-bitends to be mislead by spatial noise. Hence the usefulness
transform (1BT) allows for a measure of the informativef the prior removal of irrelevant channels. In the case of
content of each channel by analyzing its structure arie two multispectral datasets (OSarcophagusO and GElpwer
thus presents itself as an alternative to entropy. the amount of spatial noise along the channels being less

¥ The OTrue ColorO band transformation (TC) which camportant, this effect is not as pronounced. However, on
sists of transformation from refectance to XYZ then tthese latter, one can observe a very poor contrast in terms of
RGB by means of the CIE standard observer CMF.  colors (no colors at all for the OSarcophagusO image and high

¥ The Principal Components Analysis (PCA) used with theorrelation of blue and green for the OFlowersO one), iresult
HSV color space.P C; being thei-th principal compo- from the redundancy between spectral channels. Indeed, the
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Figure 8. Rendered composites before spectrum segment&mumn-wise: PCA, OSP, 1BT and CBgV

1BT-based band selection does not allow for an efbcient dmir approach, except for the OSarcophagusO image, which is
correlation of the selected bands. the only one whose number of channels has been artibcially

The OSP-based approach, on the other hand, seems to E@reased (see data description). On the brst datasetei gi
form very well on the OSarcophagus® image as it looks giigvever a poorly colorful result, but natural-looking ntires
appea“ng W|th a Very h|gh contrast Of Co|ors qu|te nataa |eSS and alSO W|th the hlgheSt ICPD due to h|gh IUm|nance
well (the MacBeth patches look accurately depicted). On ti§@ntrasts. Regarding class-separability, if we excludairag
other images, though relatively good contrasts are oldainghe OSarcophagusO image, CBSutperforms the two other
the technique doesn®t show good performances in term®a¥d selection methods according to table 1l. This indEate
natura' rendenng Moreover the same remark as befdr@t the |nf0rmat|0n measures- ba.sed Cl’ltel‘lon |S Ver¢|em
applies for the OJasper Ridge® image, of which compolitéonveying energy from the original high-dimensional gea
contains spatial noise.

The CBSV techniqgue manages to avoid the selection of
noisy channels in the case of the brst image, but yields a
poorly colorful composite, though highly contrasted. Galer ~ Overall, it is fair to conclude that CBSVallows for the
table | indicates that the most appealing results are giyen best tradeoff between both metrics.



F. Comparison post-spectrum segmentation naturalness, the best results being obtained by GB§Y,
In this section, we compare only the band selection criterighile moderately decreasing the intrinsic class-sepatybi

as used on the segmented data, in order to demonstrate@h@ reducing noise.

actual contribution of the spectrum segmentation to band

selection. Moreover, we ha}ve aI;o appl_ied the Oirreleveamt-c G. On the inRuence df

nels removalO step described in section IV.A, so as to make ) )

the CBSV method complete. We have then computed the N this section, we show how the parametenffects the

pseudo-optimal thresholding values following the progedu'®Sults- Figures 10a-b depict the evolution of, respelgfiviee

described in section IV.B.2. (see table Ill) and appliedsthe NR andICPD metrics versus .

values for the results given in tables IV and V.

Pseudo-optimal" value

OJasper RidgeO 0.28

0O0sloO 0.37

OSarcophagusO 0.34

OFlowersO 0.11
Table il

PSEUDO-OPTIMAL VALUES OF "

) ~OSP  1BT  CBSVp! opt
OJasper Ridge028.88 26.01 24.32

~ 0O0slod 37.00 45.78 33.67
OSarcophagus©031.11  35.05 23.21
OFlowersO  27.80 24.11 11.85
a
Table IV ( )

NATURAL RENDERINGS

) ~OSP  1BT  CBSVp! opt
OJasper RidgeO021.33 25.67 37.21

~ OOslod  26.02 26.78 28.03

OSarcophagusO 47.27 28.37 43.09

OFlowersO  72.89 89.25 134.61
Table V

INTER-CLASS PERCEPTUALDISTANCES

We can observe that the Pnal composites look now much
more natural and that a smaller variety of hues is rendered.
This is due to the constraint spawned by the spectrum seg- (b)
mentation, forcing the Red, Green and Blue channels to be
sought in the relevant regions of the spectrum. Figure 10.  InRuence df on: (a) NR (b) ICPD.
We also notice no more noisy rendering, as noisy channels
have been successfully removed by the pre-processing step.As shown on Pgures 10a-b, has no direct inuence on
Table IV allows us to remark that the inclusion of the spe¢he metrics considered. Nevertheless, one can notice some
trum segmentation yields an overall increase of naturalnegverall behaviors: a$ is increased, naturalness is increased
CBSV, once again outperforms the other technique, but thigd informative contentis decreased. This tells us thatoly
time on each dataset. straining too much the band selection, less energy is cauvey
In terms of class-separability, as expected, values amatbvefrom the initial dataset, while the spectrum segmentatanls
lower than without constraining the dimensionality redoict  progressively towards a Otrue colorO composite with maxima
Only one conbguration gives favor to the OSP-based banaituralness.
selection: the composite from the OSarcophagusO imag®espite the fact that we proposed an automatic method for
which is the same as the one obtained previously. Howevlte computation of an optimal, one may want to adjust it
in this case, our method gives a fairly good result and rankzanually. The following remarks aim at helping the user in
second. On the same image, the 1BT-based band selectioing so. Due to the diversity of the datasets, and because
is barely more colorful than without spectrum segmentatiothe CMF-based spectrum segmentation presented in this pape
but we can still observe a greenish hue. Moreover, one of tisedata-independent, the inBuence lofis very challenging
main advantages of CBSVover OSP band selection is theto properly understand. Indeed, none of the curves depicted
computational burden. Indeed, we have measured computaigpve is perfectly monotonous, and no generic behavior can
times twice to three times lower with our method, with thée drawn from them. One also have to consider the fact that
same conbguration (same data, same subsampling). both extremities!( =0 and! = 1) represent particular cases
Therefore, we can conclude that the addition of botind thus potential outliers. However, the whole purposéef t
pre-processing steps allows for an overall increase of thenstraint is to allow for balancing between naturalnes$ an
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Figure 9. Rendered composites after spectrum segmentalioimmn-wise: OSP, 1BT and CB$Vopt -

visual informative content, while also reducing computaéil band selection is not the point. These are two different
burden when increased. In the results, even if the GBSWhilosophies and band selection has an important advantage
method can be outperformed in certain conbgurations, @sgivover transformation. Since the underlying task of viswian

the best tradeoff between those characteristics. is the interpretation of the image, we believe that preservi
the physical meaning of spectral channels allows for a bette
VI. DISCUSSIONS understanding, and also an easier interaction for the ead us

A. Selection versus transformation

Results from the Principal Components Analysis are gen@h Limitations of the probabilistic information measures
ally highly contrasted but poorly natural. On the other hand One major drawback of the information measures presented
results from the TC band transformation are, by depnitiom this paper is that they do not take into account the order
perfectly natural but relatively poor when it comes to inforin which the values appear. That is, in the case of images,
mative content. From these remarks, we can assume that brespatial information. For this reason, two different gea
selection can outperform band transformation in bnding thth the same histogram cannot be distinguished by their
best compromise between both characteristics. However, respective entropies and the same problem appears for mutua
believe that whether or not band transformation can surpastrmation and its generalizations at theth order. Several



attempts have been made to enhance the standard entrgpypP. Scheunders,

measure by including spatial information. In [44], the auth
have proposed to no longer consider a random variable fi

each channel, but rather couples of neighboring pixels.nEve
if this improvement appears to be useful in the context of
comparing low-correlated and highly textured data, it i$ nopg
relevant in the general case of spectral images.
our experiments, we did not notice any major inBuence on

the results when enhanced entropy was used instead of[

standard one.

considerably increased.

[11]

C. Extension to general band selection

By removing the spectrum segmentation step, our approd&h

can easily be extended to the selectiofN\bfbands for other

purposes than visualization (classibcation, compregsitm
this case, some precautions have to be taken when computing
high-dimensional entropies.
nipulation of N -dimensional matrices, and the computational

requirement of our method would then be increasingly unfea- 0
15] N.P. Jacobson, M.R. Gupta, and J.B. Cole, OLinearrfusfigmage sets

Indeed, this requires the

sible. Methods consisting of approximating joint probipil [
density functions (PDF) from lower order PDFs [45] allow for

the breaking up of such complexity.

A new method for RGB-based visualization of spectral im-
ages called CBSV has been proposed. Information measurés]
at three different orders are used to compare spectral efmnn
with each other and select the best triplet, minimizing redupig;

VII. CONCLUSIONS

dancy and maximizing informative content. A visualization

oriented spectrum segmentation approach has been pr@se[}gi
v

and the role of its parameter has been discussed. Objec

results have been presented and compared to four other
techniques, assessing the efpciency of the proposed a}hprctgl]

in the rendering of visual information.
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