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A Constrained Band Selection Method Based on
Information Measures for Spectral Image Color

Visualization
Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Y. Hardeberg

Abstract—We present a new method for the visualization of
spectral images, based on a selection of three relevant spectral
channels to build a Red-Green-Blue composite. Band selection
is achieved by means of information measures at the first,
second and third orders. Irrelevant channels are preliminarily
removed by means of a center-surround entropy comparison. A
visualization-oriented spectrum segmentation based on the use
of color matching functions allows for computational ease and
adjustment of the natural rendering. Results from the proposed
method are presented and objectively compared to four other
dimensionality reduction techniques in terms of naturalness and
informative content.

Index Terms—Multi/hyperspectral imagery, Visualization,
Band Selection, Information Measures, Spectrum Segmentation,
Color Matching Functions

I. INTRODUCTION
Most of today’s visualization devices are based on the

paradigm that a combination of three primary colors (red,
green and blue) is sufficient for the human eye to characterize
any color [1]. However, in many applications such as remote
sensing, medical or art imaging, measuring the electromag-
netic properties of a scene has to be made with high spectral
precision. Analogously to the need for a high spatial resolution
for an enhanced separation of the different elements of a scene,
a high spectral resolution allows for a better estimation of its
reflectance, and thus, a better characterization of its ”true”
color, regardless of the conditions of acquisition (illumination,
camera). Multispectral imaging consists of acquiring more
than three spectral components from a scene, usually dozens,
each one of them being captured in a small range of wave-
lengths, for a better spectral precision (analogously to a pixel
covering a small area of the space). Usually, spectral images
are acquired in the visible range of wavelengths [400..700]nm,
but it is also very common to cover the infrared range (beyond
700nm). Images with a number of channels ranging from a
hundred to a thousand are referred to as hyperspectral and
higher dimensionality datasets are called ultraspectral.
High dimensionality often goes along with high computa-

tional burden, as well as some undesirable geometrical and
statistical properties [2]. Moreover, it is well-known that
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neighboring spectral channels are highly correlated, hence a
large amount of unnecessary redundancy. For these reasons,
dimensionality reduction is a very common processing. It
consists of reducing the number of bands so that only a few
relevant ones are kept to represent the whole image. This step
is often referred to as feature extraction and is achieved by
combining the original channels according to an information-
preservative criterion whose definition is usually application-
related. If the combination is linear and made under the
constraint that its weighting coefficients are in {0, 1}, one talks
about band selection. In this particular case, the reduced set is
a subset of the original one. Band selection is often prefered
since it allows for a better interpretation of the dimensionality
reduction by keeping the physical meaning of the spectral
channels. In this paper, we consider the general application of
the visualization of spectral images by means of a tri-stimulus-
based display device such as a standard computer screen.
Thus, our framework is restrained to an N-to-3 dimensionality
reduction dedicated to the human perception.

We propose a new band selection method in three steps:
first, irrelevant bands are excluded by comparing each chan-
nel’s entropy with that of its close spectral neighborhood.
Then, the image’s spectrum is segmented by thresholding
the CIE Standard Observer Color Matching Functions (CMF).
Eventually, we use normalized information measures at second
and third orders to select the triplet of bands with minimal
redundancy and maximal informative content. The proposed
technique is referred to as Constrained Band Selection for
Visualization (CBSVτ ), τ being a parameter that will be
later explained. We focus our study on two aspects: the
perceptual appeal (that we will refer to as naturalness) and
the informative content of the rendered composites. We
will demonstrate that, although being contradictory in many
cases, these objectives can indeed be balanced, according to
the user’s need, either manually or automatically.

The remainder of this paper is thus organized as follows:
first, we review some related works on the topic of dimen-
sionality reduction for spectral image visualization. In section
3, we give a brief background on entropy, mutual information
and review several N-order information measures. Then, we
present all the steps of the band selection approach. Section
5 presents the experimental framework and gives objective
results proving the efficiency of our approach. Several aspects
of the methods are then discussed before conclusion.
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II. RELATED WORK

Tri-stimulus representation of multi/hyperspectral images
for visualization is an active field of research that has been
thoroughly investigated over the past decades. One of the most
common approaches is probably the one referred to as true
color. It can basically be achieved in two different ways: one
consists of selecting the bands at 700nm, 546nm and 436nm
(or the closest) and mapping them to the three primaries: R,G
and B, respectively. The other one uses the CMF-based band
transformation [3]. Even though it generally yields a very
natural visual rendering, this approach does not take the data
itself into account at all, and thus noise, redundancy, etc. are
not accurately handled.
Another very common approach for dimensionality reduc-

tion is Principal Components Analysis (PCA), which has been
extensively used for visualization purposes. Tyo et al. [4],
investigated PCA for N-to-3 dimensionality reduction into the
HSV color space. An automatic method to find the origin of
the HSV cone is also introduced in order to enhance the final
color representation. Later, Tsagaris et al. [5] proposed to
use the fact that the red, green and blue channels, as they are
interpreted by the human eye, contain some correlation, which
is in contradiction to the underlying decorrelation engendered
by PCA. For that reason, the authors proposed a constrained
PCA-based technique in which the eigendecomposition of the
correlation matrix is forced with non-zero elements in its
non-diagonal elements. Several other PCA-based visualization
techniques can be found in the literature [6], [7], [8].
In order to alleviate the computational burden of the tra-

ditional PCA, Jia et al. [9] proposed a correlation-based
spectrum segmentation technique so that principal components
are extracted from different segments and then used for visu-
alization. Other segmented PCA approaches are investigated
in [10] including equal subgroups, maximum energy and
spectral-signature-based partitioning.
In [11], Du et al. compared seven feature extraction

techniques in terms of class separability, including PCA,
Independent Components Analysis (ICA) and Linear Discrim-
inant Analysis (LDA). ICA has also been studied by Zhu
et al. [12] for spectral image visualization. They used
several spectrum segmentation techniques (equal subgroups,
correlation coefficients and RGB-based) to extract the first IC
in each segment. The use of different color spaces for mapping
of PCs or ICs has been investigated by Zhang et al. [13].
In [14], [15], Jacobson et al. presented a band trans-

formation method allowing the CMF to be extended to the
whole image spectrum, and not only to the visible part. They
proposed a series of criteria to assess the quality of a spectral
image visualization. Later, Cui et al. [16] proposed to derive
the dimensionality reduction problem into a simple convex
optimization problem. In their paper, class separability is
considered and manipulations on the HSV cone allow for
color adjustments on the visualization. More recently, we have
proposed a method based on class-separability in the CIELAB
space for improved spectral image visualization [17].
All the previously presented approaches can be referred to

as band transformation techniques inasmuch as they produce

combinations of the original spectral channels to create an
enhanced representative triplet. The often mentioned draw-
back of this kind of approach is the loss of physical meaning
attached to a channel. That is, if, initially, a spectral band is
implicitly linked to a range of wavelengths, what can be told
about a combination of them? As previously explained, band
selection approaches overcome this problem by preserving the
underlying physical meaning of the spectral channels, thus
allowing for an easier interpretation by the human end user.
In [18], Bajcsy investigated several supervised and unsuper-

vised criteria for band selection, including entropy, spectral
derivatives, contrast, etc. Many signal processing techniques
have been applied to band selection: Constrained Energy
Minimization and Linear Constrained Minimum Variance [19],
Orthogonal Subspace Projection (OSP) [20], [21] or the One-
Bit Transform (1BT) [22]. Also information measures based
on Shannon’s theory of communication [23] have been proven
to be very powerful in the identification of redundancy in high-
dimensional datasets. Mutual Information (MI) was first used
for band selection by Conese et al. [24]. In [25] and [26], two
metrics based on MI are introduced in the context of image
fusion evaluation. They measure how much information is
shared by the original and the reduced datasets. In [27], MI is
used to measure the similarity of each band with an estimated
reference map. In [28], a normalized MI measure is used for
hierarchical spectrum segmentation. More recently, Cariou et
al. proposed an MI-based top-down band clustering technique
[29].
To our knowledge, the use of third order information

measures has not been investigated in the framework of band
selection yet. Along with a visualization-oriented spectrum
segmentation constraint, these are the main contributions of
this paper.

III. THEORETICAL BACKGROUND
This section gives some background information about

Shannon’s mutual information and its generalizations to higher
orders. When these measures are applied to a spectral image,
it is generally considered that each channel is equivalent to a
random variable X and all its pixels are events of X .

A. First and second orders
Entropy and mutual information were first introduced by

Shannon [23]. In this part, we simply recall the formulas of
(in the discrete case):

• the entropy of a random variable X :

H(X) = −
∑

x∈Ξ(X)

pX(x) logb(pX(x)) (1)

where x is an event of X , Ξ(X) is the ensemble of
possible values for X , pX(x) is the probability density
ofX and b is the order of the logarithm, usually set to 10.

• the mutual information between two random variables X
and Y :
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I(X ;Y ) =
∑

x∈Ξ(X)
y∈Ξ(Y )

pX,Y (x, y) log(
pX,Y (x, y)

pX(x).pY (y)
)

= H(X) +H(Y )−H(X ;Y ) (2)

where pX,Y (x, y) is the joint probability density of the
couple (X,Y ) and H(X,Y ) the joint entropy of the
couple (X,Y ).

• The conditional mutual information between two random
variables X and Y , knowing a third one, Z:

I(X ;Y |Z) = E(I(X ;Y )|Z) (3)

where E(.) is the mathematical expectation.

• The mutual information between two sets of random
variables:

I((X1, X2, X3); (Y1, Y2)) =H(X1, X2, X3)

+H(Y1, Y2)

−H((X1, X2, X3); (Y1, Y2))
(4)

The well-known Venn diagram allows for a good under-
standing of these metrics, as shown in Figure 1.

Figure 1. Venn representation of mutual information. The three rectangles
depict the entropy of a random variable each. The overlappings represent
the information shared by several variables. The squared area represents the
conditional mutual information I(X; Y |Z).

B. Third order
Several generalizations of mutual information have been

proposed in the literature. In this section, for purposes of
clarity, we will focus solely on the third order. However,
extension to higher orders is quite straight forward.
Watanabe [30] introduced the total correlation, also known

as multivariate constraint [31] or multiinformation [32]. It
is defined as the difference between the sum of marginal
entropies and the joint entropy of the set:

TC(X ;Y ;Z) =
∑

i∈{X;Y ;Z}

H(i)−H(X ;Y ;Z) (5)

The main drawback of total correlation lays in the fact that it
measures both second and third order, indiscriminately, while
favoring the second order.
McGill [33] presented the interaction information, which is

defined as follows:

A(X ;Y ;Z) = I(X ;Y |Z)− I(X ;Y )

= I(X ;Z|Y )− I(X ;Z)

= I(Y ;Z|X)− I(Y ;Z) (6)

It can also be written as a sum of entropies at all orders:

A(X ;Y ;Z) =−
∑

i∈{X;Y ;Z}

H(i)

+
∑

i∈{X;Y ;Z}
j∈{X;Y ;Z}\i

H(i, j)

−H(X ;Y ;Z) (7)

More recently, Bell [34] proposed the co-information which
is identical to the interaction information, but with an opposite
sign:

I(X ;Y ;Z) = −A(X ;Y ;Z) (8)

A particularly interesting property of these measures is that
they can take both positive and negative values. If we look at
the Venn diagram in the last section, we naturally point out the
center region as the third order redundancy. However, because
of the very existence of the negative case, the Venn diagram
representation is no longer relevant at orders higher than
two. For the same reason, both aforementioned definitions are
correct, nevertheless, we find Bell’s definition more suitable
and more intuitive for the following explanations.
In the case of positive co-information, we talk about redun-

dancy, whereas in the case of negative values, we talk about
synergy. Redundancies are foreseeable from lower orders
while synergies only appear when the random variables are
taken together. If we refer to equation 6, the synergy case
appears when, for instance, I(X ;Y |Z) > I(X ;Y ) that is,
when the knowledge of Z increases the dependency between
X and Y . In order to explain this particular property, we
consider a simple XOR cell with two binary inputs, X and
Y and an output Z = X ⊕ Y . If we consider the inputs
as independent, the following stands true: I(X ;Y ) = 0. If
we now introduce the knowledge of Z , we also introduce the
underlying knowledge of the XOR relation linking the three
variables. For instance, if we know that Z = 0, we can deduce
thatX = Y , and, by this, we increase the dependency between
the inputs so that I(X ;Y |Z) > I(X ;Y ).
In the case of spectral images, this principle remains true.

The knowledge of one channel can increase the mutual infor-
mation between the two others and, in that case, the smaller
the co-information, the higher the shared information. There-
fore, in the context of minimizing the redundancy (generally
speaking) inside a set of random variables, the absolute value
of co-information must be minimal.

IV. PROPOSED METHOD

In this section, we describe the different stages of the
CBSVτ method: exclusion of irrelevant channels, spectrum
segmentation and band selection.
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A. Exclusion of irrelevant bands
We propose to make a first coarse selection allowing for the

removal of low informative channels. Multispectral images
are known to contain high redundancy between neighboring
bands and thus, channels that do not meet this definition
are considered noisy or poorly informative [35]. Either way,
these bands can be excluded. Measuring the similarity by
means of second- order measures such as correlation or mutual
information requires however a high computational burden,
since all the pairs of bands must be considered. Another way
of coarsely measuring similarity can be done by comparing
the intrinsic informative content of a band with that of its
neighbors. This can be achieved by means of a moving
average as local threshold [36], [22]. We propose to use
Shannon’s entropy as a measure of informative content. It
is computed for each channel, resulting in the solid curve in
Figure 2 (for the ”Jasper Ridge” image, see description in the
next section).

Figure 2. Exclusion of irrelevant bands: entropy, local average and thresholds
for the ”Jasper Ridge” image. Channels outside the rejection thresholds are
excluded (δ = 10% and s = 11).

The dotted line represents the local average, which is
defined for a band Bi as follows:

H̄s(Bi) =
1

s

"s/2#∑

k=−"s/2#

H(Bi+k) (9)

with s representing the size of the neighborhood. Bands whose
entropy is higher (resp. lower) than their local average value
moderated by the thresholding factor δ are then considered as
irrelevant. Thus, if a band Bi reaches the condition in equation
10, it is excluded.

H(Bi) /∈ [H̄s(Bi) ∗ (100− δ); H̄s(Bi) ∗ (100 + δ)] (10)

With δ, the thresholding parameter, given in percentage.
Both the size of the window and the thresholds have to be set
according to the smoothness of the entropy curve. Indeed, the
smoother the latter, the lower the probability to have irrelevant
bands and, accordingly, the smaller the amount of channels
that fall outside the range of relevance. In that case, small
value of δ and s are advised in order to gain in precision. On
the other hand, a sharp-shaped curve implies strong differences

between neighboring channels. In such a case, a large window
size is prefered in order to reduce the influence of outliers.
This yields a smoother local average curve, and also a less
precise analysis. δ allows for adjusting how ”strong” the
exclusion will be (the lower, the stronger).

(a) (b)
Figure 3. Example of excluded bands: (a) num 5 (b) num 164. The first
one falls below the relevance range because of its very low mean value. The
second one is rejected for it contains to much spatial noise.

In the case of the example image ”Jasper Ridge”, one can
notice steep curvature changes, hence our choice to use a large
window size (s = 11). Moreover, since we first aim at a
coarse band selection, we set the threshold to a moderate value
(δ = 10%). Figure 3 shows examples of excluded channels
for this image.

B. Spectrum segmentation
1) Principle: Spectrum segmentation aims at regrouping

spectral channels so that bands of a same segment are consid-
ered similar in some way, in order to alleviate the computation
of the feature extraction. Usually, similarity is measured in
terms of shared information and groups are drawn contigu-
ously among the spectrum. We propose to measure similarity
in terms of human vision. At this aim, we propose to use
the CIE 1964 Supplementary Standard Colorimetric Observer
Color Matching Functions (CMF) [37] which are descriptors
of the chromatic response of the human eye. The CMF are
usually used to linearly combine spectral channels into a tri-
stimulus (XYZ, RGB) representation roughly matching the
human perception of Red, Green and Blue [38]. In other
words, each wavelength is associated with three weighting
coefficients corresponding to its contributions to the perception
of three primary colors. We propose to interpret this statement
as follows: the higher the weighting coefficient W p

i of a
channel i ∈ [1..N ] in the component p ∈ {R;G;B}, the
higher the relevance for W p

i to be a good representative of p.
Consequently, we propose to cluster the CMF coefficients into
two classes, by means of a binarizing threshold τ . Coefficients
above τ depict the relevant wavelengths for band selection.
We note the ensemble of the corresponding channels Segτp ,
p ∈ {R,G,B}.
Let us now consider the common case of spectral image

ranging outside the visible range of wavelengths (400-700nm).
Indeed, the CMF are designed only for this part of the
electromagnetic spectrum. As a solution to this, Jacobson et
al. [14] proposed to stretch the CMF so that it covers the entire
image spectrum, no matter what wavelengths it ranges in. This
stretched CMF principle is illustrated by Figure 4, for an image
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covering the range [300..1000] nanometers. In the case of
a non-constant spectral sampling step, that is, for example,
when bands have been removed by the previous step, either the
lacking channels must be replaced by interpolation methods,
or the CMF coefficients must be adjusted. For computational
ease, we recommend the latter solution.

Figure 4. The stretched CMF principle: In strong colors, the original
functions. In light colors, the same ones stretched to fit a larger range of
wavelengths.

Eventually, three segments are obtained, depending on the
binarization threshold: SegτR, SegτG and SegτB in which the
band selection for the red, green and blue primitive channels
will be performed, respectively. Consequently, for a growing
value of τ , the size of segments gets smaller and:

τ1 > τ2 → Segτ2p ∈ Segτ1p , ∀p ∈ {R,G,B} (11)

The spectrum segmentation is performed using normalized
functions so that maxi(W

p
i ) = 1, ∀P . Figure 5 illustrates the

technique as well as the role of τ .

Figure 5. The spectrum segmentation. The curve represents the red
CMF, normalized between 0 and 1 and stretched between 300 and 1000
nm. Extremum values have been removed for clarity. The horizontal lines
represent two cases of spectrum segmentation, one for τ = 0.2 and another
for τ = 0.7. In both cases, the grey segments highlight the removal areas
while bands in the orange zones are kept.

We note two particular cases : if τ is set to 0, the hypothesis
is rejected and band selection is totally unconstrained. On
the contrary, if τ = 1, the hypothesis is considered perfectly
relevant and there is no need to proceed with band selection
since, in that case, the size of each segment is reduced to 1.

2) Automatic thresholding: Setting the parameter τ may
be quite challenging, especially in the absence of a specific
application. As will be seen and discussed in the results
section, a manual setting allows to subjectively moderate the
natural aspect of the result, but there is no guarantee to find
a general optimum. What we suggest here is to empirically
find a suboptimal solution based on a maximization of the
number of discarded channels. Indeed, as explained in the
previous section, not only does this step provide a relevant
spectrum segmentation, it also allows to discard a certain
amount of channels prior to band selection. Therefore, we
propose to define the best thresholding as the one maximizing
the amount of discarded information, under the constraint that
the latter must always be inferior to the amount of preserved
information. As a measure of informative content, we have
used Shannon’s entropy. Let S−

τ be the set of channels
removed by thresholding the CMF with τ and let S+

τ be its
complementary set. Then this pseudo-optimal τ is given by
the following equation:

τp−opt = argmax
τ

Card(S−
τ ) w.t.c. H(S−

τ ) < H(S+
τ )

We note two particular situations:
• If H(S−

τ ) > H(S+
τ ) with Card(S−

τ ) = 1, the default
value is set to 0.

• If H(S−
τ ) < H(S+

τ ) for every τ , then the default value
is set to 1.

Let N be the dimensionality of the image and Htotal its
overall entropy. The curves on Figure 6 show the evolution of
H(S−

τ )
Htotal

for all the datasets described in section V.A.

Figure 6. The proportion of discarded entropy in regards to τ

The crossing of the red dotted line indicates that the
discarded information is higher than the remaining one, that
is, the pseudo-optimal thresholding value according to the
aforementioned criterion (depicted by red spots).

C. Band selection algorithm

The dimensionality reduction of the multispectral image
must be carried out by optimizing two criteria:

• The informative content of the reduced dataset, which
has to be maximal.

• Its intrinsic redundancy, which has to be minimal.
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Hence the need for a metric measuring both quantities. In
[28], the authors used a normalized version of mutual infor-
mation that we propose to generalize for co-information and
higher order information measures. We define the k-th order
Normalized Information (NI) of the bandset S = {B1, .., Bk}
as the following quantity:

NIk(S) =
k × I(S)
k∑

i=1
H(Bi)

(12)

Because a direct search for the best triplet of bands
Bred, Bgreen, Bblue would require a very high computational
time, we propose to proceed iteratively, by using an algorithm
similar to the one used in [21]. First, the Red and Blue
primitive channels are sought as the most dissimilar couple of
bands in the ensemble SegR × SegB. This choice is guided
by the fact that the couple R,B presents more orthogonality
than any other couple in R,G,B, a property that is suggested
by the very shape of the CMF and by the way they overlap
along the spectrum. Then, the Green channel is selected as
the one minimizing |NI(Bred, Bk, Bblue)|. The procedure is
detailed in algorithm 1.

Algorithm 1 Band selection
i = 0; k = 1;
randomly choose j so that Bj ∈ SegτR;
iterations = 0;
while (i != k) and (iterations < 20) do
if iterations is even then
Ξ = SegτB;

else
Ξ = SegτR;

end if
find temp = argmin

k
[NI2(Bj , Bk)] with Bk ∈ Ξ;

i ← j; j ← k; k ← temp;
iterations++;

end while
if iterations is even then
Bred = Bk;
Bblue = Bj ;

else
Bred = Bj;
Bblue = Bk;

end if
find k = argmin

k
|NI3(Bred, Bk, Bblue)| with Bk ∈ SegτG.

Bgreen = Bk;

V. EXPERIMENTS AND RESULTS

In this section, we first present the datasets, the metrics as
well as the other techniques used for comparison. Computa-
tional consideration are then briefly tackled before presenting
results both before and after spectrum segmentation, for a
thorough comparison. The influence of τ is then discussed.

A. Data sets
For our experiments, we used four different reflectance

datasets which are now presented:
• ”Jasper Ridge” is a well-known 220 bands hyperspectral
image from the AVIRIS sensor [39]. 5 classes were
considered: water, road, urban area (houses), and two
types of minerals.

• ”Oslo” is a 160 bands remote sensing hyperspectral
image, representing a urban area in the neighborhood of
Oslo (Norway). It was acquired with the HySpex VNIR-
1600 sensor, developed by the Norsk Elektro Optikk
company. The sensor ranges from the early visible
(400nm) to the near infrared (1000nm) with a spectral
resolution of 3.7 nm. More information can be found on
the constructor’s website [40]. We considered 5 classes
in this image: vegetation, road, roof tops (two kinds) and
cars.

• ”Sarcophagus” is a 35 bands multispectral image rep-
resenting a portion of a 3rd century sarcophagus from
the St Matthias abbey in Trier, Germany [41]. It was
acquired by means of a 8 channels filter wheel camera
ranging only in the visible spectrum (400-740nm). A
supervised neural-network-based reflectance estimation
algorithm allowed for an enhancement of the sampling
step to 10 nm. In this image, we considered solely the 24
patches of the MacBeth CC target for pixel classification.

• ”Flowers” is a 31 bands multispectral image from the
database used in [42]. Three classes are present on this
image: flower, leaves and background.

Each reflectance dataset has been normalized so that it
ranges in [0..1] before dimensionality reduction and the rep-
resentations are depicted here in their raw form in order to
allow for a fair visual comparison. Only lightnesses have been
equally increased in all the following figures in order to better
the readableness of this document. Figure 7 depicts the true
color representations of the datasets. They have been com-
puted by means of the standard CMF-based transformation,
after removal of irrelevant channels (see section IV.A) and
without atmospheric correction.

B. Metrics
Two criteria have been used to assess the efficiency of the

methods:
• the natural rendering of the composites. Subjectively
measuring the naturalness of an image is really chal-
lenging since there is no exact definition for it, even
though there have been some attempt to define it in
a statistical manner [43]. In this study, we propose
to make the assumption that the true color CMF-based
transformation yields a reference image for naturalness.
Consequently, the more natural an image is, the closer (in
a perceptual fashion) it is to its true color representation.
Thus, naturalness has been measured by computing the
average euclidean perceptual distances of the resulting
images with their respective CMF-based ’true color’
representation. This metric is hereby referred to as NR
(Natural Rendering).
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(a) (b)

(c) (d)
Figure 7. ”True color” representations of the datasets. (a) ”Jasper Ridge”
(b) ”Oslo” (c) ”Sarcophagus” (d) ”Flowers”

• The visual informative content, which has been mea-
sured by the average inter-class perceptual distance, as
suggested by Du et al. [11]. At this aim, we have manu-
ally selected 20 pixels by class, in each image. Then,
each class centroid has been computed and projected
in a perceptually uniform color space. The euclidean
distances between each couple of centroids have then
been averaged. This metric will be referred to as ICPD
(Inter-Class Perceptual Distance).

For both metrics, we have projected the RGB data into the
L*a*b* color space, by assuming a D65 illuminant. We used
the following ranges: L* ∈ [0..100], a* ∈ [−110..110] and b*
∈ [−110..110].

C. Benchmarking methods
We propose to compare our approach with four other

methods.
• The OSP-based band selection (OSP) [21] which consists
of progressively selecting the channel which is the most
orthogonal to the group of bands already selected. Due to
the high memory requirements of this method, a spatial
subsampling is necessary. According to Du et al., the
subsampling rate can be chosen as high as 1:100 (only
1% of the pixels are kept) without affecting the results.
This rate has been applied in this study.

• The 1BT-based band selection (1BT) [22]. The one-bit-
transform (1BT) allows for a measure of the informative
content of each channel by analyzing its structure and
thus presents itself as an alternative to entropy.

• The ”True Color” band transformation (TC) which con-
sists of transformation from reflectance to XYZ then to
RGB by means of the CIE standard observer CMF.

• The Principal Components Analysis (PCA) used with the
HSV color space. PCi being the i-th principal compo-

nent, we have used the following mapping: PC1 → V ,
PC2 → H , PC3 → S.

D. Computational considerations
The histogram estimation involved in the entropy compu-

tation can be optimized by selecting the adequate number
of bins. If a channel’s pixels are represented by one byte
each, it is pointless to take more than 256 bins, however,
we can choose a lower number to improve the computational
efficiency without changing the accuracy of the measure. In
this paper, all entropy computations have been achieved with
32 bins with no significative difference on the results.

E. Comparison prior to spectrum segmentation
In this section, we focus on the evaluation of dimensionality

reduction techniques applied on raw data, that is, prior to
spectrum segmentation.
Figure 8 shows the obtained composites for each dataset by

means of PCA, OSP, 1BT and CBSV0. In order to obtain a
fair comparison with the OSP method, each dataset has been
spatially subsampled by a ratio of 1:100 before dimensionality
reduction. Tables I and II give the corresponding values of
both NR and ICPD.

PCA OSP 1BT CBSV0

”Jasper Ridge” 60.21 64.32 54.01 44.23
”Oslo” 67.23 57.00 50.33 47.41

”Sarcophagus” 31.11 24.32 37.76 26.14
”Flowers” 38.22 31.40 32.12 20.39

Table I
NATURAL RENDERINGS

TC PCA OSP 1BT CBSV0

”Jasper Ridge” 17.74 26.18 26.33 30.67 40.44
”Oslo” 19.62 25.22 23.02 23.63 23.77

”Sarcophagus” 39.91 35.09 47.27 28.39 41.70
”Flowers” 104.95 137.00 87.78 88.29 118.00

Table II
INTER-CLASS PERCEPTUAL DISTANCES

High color differences are observed between the results, and
particularly, hue differences. For instance, on the ”Oslo” im-
age, one can notice blue-, red-, yellow- and even orange-tinted
renderings. This shows how numerous are the possibilities
when it comes to visualizing spectral images, and illustrates
the need for a common reference, namely the naturalness.
On the first two datasets, the 1BT-based band selection

composites contain more spatial noise than the others (see red
pixels on the AVIRIS image). It seems fair to assume that the
information measurement on which is based this technique
tends to be mislead by spatial noise. Hence the usefulness
of the prior removal of irrelevant channels. In the case of
the two multispectral datasets (”Sarcophagus” and ”Flowers”),
the amount of spatial noise along the channels being less
important, this effect is not as pronounced. However, on
these latter, one can observe a very poor contrast in terms of
colors (no colors at all for the ”Sarcophagus” image and high
correlation of blue and green for the ”Flowers” one), resulting
from the redundancy between spectral channels. Indeed, the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 8. Rendered composites before spectrum segmentation. Column-wise: PCA, OSP, 1BT and CBSV0.

1BT-based band selection does not allow for an efficient de-
correlation of the selected bands.
The OSP-based approach, on the other hand, seems to per-

form very well on the ”Sarcophagus” image as it looks quite
appealing, with a very high contrast of colors, quite natural as
well (the MacBeth patches look accurately depicted). On the
other images, though relatively good contrasts are obtained,
the technique doesn’t show good performances in terms of
natural rendering. Moreover, the same remark as before
applies for the ”Jasper Ridge” image, of which composite
contains spatial noise.
The CBSVτ technique manages to avoid the selection of

noisy channels in the case of the first image, but yields a
poorly colorful composite, though highly contrasted. Overall,
table I indicates that the most appealing results are given by

our approach, except for the ”Sarcophagus” image, which is
the only one whose number of channels has been artificially
increased (see data description). On the first dataset, it gives
however a poorly colorful result, but natural-looking nonethe-
less, and also with the highest ICPD, due to high luminance
contrasts. Regarding class-separability, if we exclude again
the ”Sarcophagus” image, CBSVτ outperforms the two other
band selection methods according to table II. This indicates
that the information-measures-based criterion is very efficient
in conveying energy from the original high-dimensional image.

Overall, it is fair to conclude that CBSV0 allows for the
best tradeoff between both metrics.



9

F. Comparison post-spectrum segmentation
In this section, we compare only the band selection criteria,

as used on the segmented data, in order to demonstrate the
actual contribution of the spectrum segmentation to band
selection. Moreover, we have also applied the ”irrelevant chan-
nels removal” step described in section IV.A, so as to make
the CBSVτ method complete. We have then computed the
pseudo-optimal thresholding values following the procedure
described in section IV.B.2. (see table III) and applied these
values for the results given in tables IV and V.

Pseudo-optimal τ value
”Jasper Ridge” 0.28

”Oslo” 0.37
”Sarcophagus” 0.34
”Flowers” 0.11

Table III
PSEUDO-OPTIMAL VALUES OF τ

OSP 1BT CBSVp−opt

”Jasper Ridge” 28.88 26.01 24.32
”Oslo” 37.00 45.78 33.67

”Sarcophagus” 31.11 35.05 23.21
”Flowers” 27.80 24.11 11.85

Table IV
NATURAL RENDERINGS

OSP 1BT CBSVp−opt

”Jasper Ridge” 21.33 25.67 37.21
”Oslo” 26.02 26.78 28.03

”Sarcophagus” 47.27 28.37 43.09
”Flowers” 72.89 89.25 134.61

Table V
INTER-CLASS PERCEPTUAL DISTANCES

We can observe that the final composites look now much
more natural and that a smaller variety of hues is rendered.
This is due to the constraint spawned by the spectrum seg-
mentation, forcing the Red, Green and Blue channels to be
sought in the relevant regions of the spectrum.
We also notice no more noisy rendering, as noisy channels

have been successfully removed by the pre-processing step.
Table IV allows us to remark that the inclusion of the spec-

trum segmentation yields an overall increase of naturalness.
CBSVτ once again outperforms the other technique, but this
time on each dataset.
In terms of class-separability, as expected, values are overall

lower than without constraining the dimensionality reduction.
Only one configuration gives favor to the OSP-based band
selection: the composite from the ”Sarcophagus” image,
which is the same as the one obtained previously. However,
in this case, our method gives a fairly good result and ranks
second. On the same image, the 1BT-based band selection
is barely more colorful than without spectrum segmentation,
but we can still observe a greenish hue. Moreover, one of the
main advantages of CBSVτ over OSP band selection is the
computational burden. Indeed, we have measured computing
times twice to three times lower with our method, with the
same configuration (same data, same subsampling).
Therefore, we can conclude that the addition of both

pre-processing steps allows for an overall increase of the

naturalness, the best results being obtained by CBSVp−opt,
while moderately decreasing the intrinsic class-separability
and reducing noise.

G. On the influence of τ
In this section, we show how the parameter τ affects the

results. Figures 10a-b depict the evolution of, respectively, the
NR and ICPD metrics versus τ .

(a)

(b)
Figure 10. Influence of τ on: (a) NR (b) ICPD.

As shown on figures 10a-b, τ has no direct influence on
the metrics considered. Nevertheless, one can notice some
overall behaviors: as τ is increased, naturalness is increased
and informative content is decreased. This tells us that, by con-
straining too much the band selection, less energy is conveyed
from the initial dataset, while the spectrum segmentation leads
progressively towards a ”true color” composite with maximal
naturalness.
Despite the fact that we proposed an automatic method for

the computation of an optimal τ , one may want to adjust it
manually. The following remarks aim at helping the user in
doing so. Due to the diversity of the datasets, and because
the CMF-based spectrum segmentation presented in this paper
is data-independent, the influence of τ is very challenging
to properly understand. Indeed, none of the curves depicted
above is perfectly monotonous, and no generic behavior can
be drawn from them. One also have to consider the fact that
both extremities (τ = 0 and τ = 1) represent particular cases
and thus potential outliers. However, the whole purpose of the
constraint is to allow for balancing between naturalness and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 9. Rendered composites after spectrum segmentation. Column-wise: OSP, 1BT and CBSVp−opt.

visual informative content, while also reducing computational
burden when increased. In the results, even if the CBSVτ

method can be outperformed in certain configurations, it gives
the best tradeoff between those characteristics.

VI. DISCUSSIONS
A. Selection versus transformation
Results from the Principal Components Analysis are gener-

ally highly contrasted but poorly natural. On the other hand,
results from the TC band transformation are, by definition,
perfectly natural but relatively poor when it comes to infor-
mative content. From these remarks, we can assume that band
selection can outperform band transformation in finding the
best compromise between both characteristics. However, we
believe that whether or not band transformation can surpass

band selection is not the point. These are two different
philosophies and band selection has an important advantage
over transformation. Since the underlying task of visualization
is the interpretation of the image, we believe that preserving
the physical meaning of spectral channels allows for a better
understanding, and also an easier interaction for the end user.

B. Limitations of the probabilistic information measures
One major drawback of the information measures presented

in this paper is that they do not take into account the order
in which the values appear. That is, in the case of images,
the spatial information. For this reason, two different images
with the same histogram cannot be distinguished by their
respective entropies and the same problem appears for mutual
information and its generalizations at the N -th order. Several
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attempts have been made to enhance the standard entropy
measure by including spatial information. In [44], the authors
have proposed to no longer consider a random variable for
each channel, but rather couples of neighboring pixels. Even
if this improvement appears to be useful in the context of
comparing low-correlated and highly textured data, it is not
relevant in the general case of spectral images. During
our experiments, we did not notice any major influence on
the results when enhanced entropy was used instead of the
standard one. On the contrary, computational burden was
considerably increased.

C. Extension to general band selection
By removing the spectrum segmentation step, our approach

can easily be extended to the selection of N bands for other
purposes than visualization (classification, compression). In
this case, some precautions have to be taken when computing
high-dimensional entropies. Indeed, this requires the ma-
nipulation of N -dimensional matrices, and the computational
requirement of our method would then be increasingly unfea-
sible. Methods consisting of approximating joint probability
density functions (PDF) from lower order PDFs [45] allow for
the breaking up of such complexity.

VII. CONCLUSIONS
A new method for RGB-based visualization of spectral im-

ages called CBSVτ has been proposed. Information measures
at three different orders are used to compare spectral channels
with each other and select the best triplet, minimizing redun-
dancy and maximizing informative content. A visualization-
oriented spectrum segmentation approach has been presented
and the role of its parameter has been discussed. Objective
results have been presented and compared to four other
techniques, assessing the efficiency of the proposed approach
in the rendering of visual information.
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