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In this paper, we investigate different approaches for multi/hyperspectral image compression.
In particular, we compare the classic Multi-2D compression approach and two different im-
plementations of a 3D approach (Full 3D and Hybrid) with regards to variations in spatial and
spectral dimensions. All approaches are combined with a spectral Principal Component Analy-
sis (PCA) decorrelation stage to optimize performance. For consistent evaluation, we propose
a larger comparison framework than the conventionally used PSNR, including eight metrics
divided into three families. We also discuss the time and memory consumption difference
between the three compression approaches. The results show the weaknesses and strengths of
each approach.

Introduction
A hyper/multispectral imaging system splits the light

spectrum into more than three frequency bands (dozens to
hundreds) and records each of the images separately as a set
of monochrome images. This type of technique increases
the number of acquisition channels in the visible spectrum
and extends channel acquisition to the light that is outside
the sensitivity of the human eye. Such systems offer several
advantages over conventional RGB imaging and have, there-
fore, attracted increasing interest in the past few years. How-
ever, multispectral uncompressed images, in which a single
image-band may occupy hundreds of megabytes, often re-
quire high capacity storage. Compression is thus necessary
to facilitate both the storage and the transmission of multi-
spectral images.

Generally, a multispectral image is represented as a 3D
cube with one spectral and two spatial dimensions. The fact
that a multispectral image consists of a series of narrow and
contiguously spectral bands of the same scene produces a
highly correlated sequence of images. This particularity dif-
ferentiates multispectral images from volumetric ones with
three isotropic spatial dimensions, and also from videos with
one temporal and two spatial dimensions. Conventional com-
pression methods are not optimal for multispectral image
compression, which is why compression algorithms need to
be adapted to this type of image.

One of the most efficient compression methods for
monochrome images compression is the JPEG 20001

(Boliek, Christopoulos, & Majani, 2000 ; Boliek, Ma-
jani, Houchin, Kasner, & Carlander, 2000 ; Christopou-
los, Skodras, & Ebrahimi, 2000 ; Taubman, 2000 ; Taub-
man, Marcellin, & Rabbani, 2002). Its extension to
multi/hyperspectral images yields to different approaches.
These approaches depend on the manner of which one con-
sider the multi/hyperspectral cube after the decorrelation

stage (figure 1):
• in the Multi-2D approach, each image band of the

multi/hyperspectral image is considered separately (2D
wavelets + 2D SPIHT) (Du & Fowler, 2007 ; Kaarna, Toiva-
nen, & Keranen, 2006 ; Mielikainen & Kaarna, 2002),
• the whole cube is considered as input leading to two

main implementations: the Hybrid approach (3D wavelets
+ 2D SPIHT), as used in (Penna, Tillo, Magli, & Olmo,
2006), and the Full 3D approach (3D wavelets + 3D SPIHT).
For this latter we used an anisotropic 3D wavelets decom-
position. Many works in literature have explored the 3D
wavelet transform for multi/hyperspectral image compres-
sion but they only use isotropic 3D wavelets (same type of
wavelets following all directions) (Kaarna, Zemcik, Kaelvi-
ainen, & Parkkinen, 1998 ; Kaarna & Parkkinen, 2000b,
2000a ; Kaarna, 2001 ; Kaarna et al., 2006 ; Kim, Xiong, &
Pearlman, 2000 ; Lim, Sohn, & Lee, 2001 ; Mielikainen &
Kaarna, 2002 ; Penna et al., 2006 ; Tang, Cho, & Pearlman,
2003), but only Kaarna and Parkkinen describe a compres-
sion method based on an anisotropic wavelets decomposition
in (Kaarna & Parkkinen, 1998).

We tested the three compression approaches with the same
lifting scheme wavelet transform and compared them. To
provide a more objective benchmark, we propose a frame-
work of evaluation composed of seven metrics in addition to
the classic PSNR. These metrics evaluate the quality of re-
construction in terms of signal, spectral reflectance and per-
ceptive aspects.

In the next section, we provide a short overview of how
we use the principal composant analysis algorithm (PCA)
(Pearson, 1901) within the three compression approaches,
before describing them into the second section. The third
section introduces the framework of comparison by splitting

1 http://www.jpeg.org
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Figure 1. Graphical representation of the three compression ap-
proaches.

the metrics into three families and gives the explicit formula
for each metric. We discuss our experiments and their results
in the fourth section and highlight the strengths and weak-
nesses of the three approaches. In order to take the algorith-
mic aspects of these strategies into account, we will also dis-
cuss them in terms of time and memory consumption in the
fourth section. Conclusions are presented in the last section.

Compression approaches
For the implementation of the three approaches we chose

to use the wavelets of JPEG 2000 standard because it is a
reference for 2D compression. The JPEG 2000 standard
wavelets are ”Le Gall 5/3” for lossless compression and
”Cohen-Daubechies-Feauveau 9/7” (or CDF 9/7) for lossy
compression. In our case we perform lossy compression, so
we will use the CDF 9/7 wavelet.

As previously reported, multispectral images have a high
correlation between image-bands. To achieve the best com-
pression ratios it is necessary to take this correlation into ac-
count.

PCA decorrelation
In order to optimize multi/hyperspectral image compres-

sion, a decorrelation step is often used. In this con-
text, several methods have been developed. Classic algo-
rithms are based on vector quantization (Gupta & Gersho,
1992), wavelets or Hybrid methods, such as DPCM-DCT
(Abousleman, Marcellin, & Hunt, 1995), KLT-DCT (Saghri
& Tescher, 1991) and PCA (KLT). The PCA has been shown
to be one of the most efficient spectral decorrelators (Ready
& Wintz, 1973) and is used in many compression methods.

Epstein et al. propose in (Epstein, Hingorani, Shapiro, &
Czigler, 1992) a method for landsat thematic mapper multi-

spectral imagery. The method first removes inter-band cor-
relation by PCA to produce principle components of seven
landsat bands. The principle components are then com-
pressed using wavelet and lossless compression techniques
like run length encoding. Harsanyi and Chang (Harsanyi &
Chang, 1994) applied PCA to hyperspectral images to re-
duce data dimensionality, suppress undesired or interfering
spectral signatures, and classify the spectral signatures of in-
terest. In (Mielikainen & Kaarna, 2002), Mielikäinen and
Kaarna applied PCA to reduce correlation among spectral
bands, but they only selected a small number of spectra from
the image for the calculation of the eigenvectors. They then
applied integer wavelet transform to the residual image to
concentrate energy and reduce entropy. Du and Fowler im-
plemented PCA along with JPEG 2000 for hyperspectral im-
age compression (Du & Fowler, 2007). They assumed that
PCA would help in spectral decorrelation and JPEG 2000
would help in compression. They found that the method per-
formed better than the combination scheme of wavelet for
spectral decorrelation and JPEG 2000 for compression. They
tested both methods and found that, for rate-distortion and in-
formation preservation, PCA with JPEG 2000 outperformed
JPEG 2000 alone.

Other spectral decorrelators based on PCA may be used.
In (Chang, Cheng, & Chen, 2000), adaptive KLT is used
for decorrelation. The original image is divided into proper
regions, and transforms each image data-set region by the
corresponding transformation function. The results of their
simulations show that the performance of adaptive KLT is
better than KLT alone. In (Gu, Zhang, & Zhang, 2002) Gu et
al. proposed a Kernel Based Nonlinear Subspace Projection
(KNSP) method followed by kernel PCA. They partitioned
the full data space into different subspaces. Next, they used
Kernel PCA for feature selection based on class separatibility
criteria. The authors claim that the method is more suitable
for feature extraction than linear PCA and segmented linear
component transformation, particularly when hyperspectral
data have non-linear characteristics.

Some compression algorithms are optimised for specific
applications (classification, visualisation, dimension reduc-
tion, etc.). For this they will use PCA variants. In our case
we simply seek to compress, without knowledge of the final
image utilisation, which is why we use classical PCA, which
does not favor any particular use.

In our experiments, we applied PCA to the original
multi/hyperspectral image in the spectral dimension. As a
result, we obtain a new multiband image in the transform
domain in which the spectral correlation is reduced. The
image-bands in the transform domain were sorted with de-
creasing variance (according to the values of the eigenval-
ues). We finally applied the three compression approaches
to all bands of the transformed image, unlike in dimension
reduction (Harsanyi & Chang, 1994 ; Mielikainen & Kaarna,
2002 ; Du & Fowler, 2007 ; Gu et al., 2002) where only a few
bands were selected. This procedure allowed us to preserve
the maximum amount of image information.
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First approach – Multi-2D
This approach consists of applying the same 2D wavelets

transform on each band of the resulting PCA image. Because
of PCA, the resulting image has decreasing energy bands. In
order to take this fact into account, it is preferable to weigh
each band. For weights, we define the energy E of each band
as in the formula:

E =

��

x,y

Iλ(x, y)2

XY
(1)

where Iλ is the image band at the λ wavelength, X and Y are
its dimensions, and x and y are the position of a pixel in the
band.

Afterwards, we apply a 2D SPIHT (Said & Pearlman,
1996) coding to each band of the wavelet transform results
to achieve compression.

Second approach – Full 3D
The Full 3D approach consists of considering the whole

multi/hyperspectral image cube as an input for a 3D wavelet
transform. In our case the input is the result of the PCA.
Then a 3D extension of SPIHT encoder is applied. The 3D
SPIHT encoder of Kim et al. (Kim et al., 2000) is appropriate
to the 3D block shape of the decomposition. Dragotti et al.
(Dragotti, Poggi, & Ragozini, 2000) also propose a 3D ex-
tension of SPIHT for multispectral image compression, but
this encoder works like a temporal compensator and is more
appropriate for video coding.

However, since the spectral dimension of the multispectral
images is lower than the two other spatial dimensions and
since following this dimension the correlation is higher, it is
appropriate to use a different type of wavelets for this dimen-
sion. In (Kaarna & Parkkinen, 1998) Kaarna and Parkkinen
recommend a short wavelets basis as a good choice for spec-
tral wavelets. This recommendation is confirmed by the re-
sults obtained by Mansouri et al. in (Mansouri, Sliwa, Hard-
eberg, & Voisin, 2008) in which the authors propose the Haar
lifting scheme wavelets basis as an appropriate short support
basis for reflectance representation and estimation from mul-
tispectral images.

Technically speaking, it is possible to use two meth-
ods to apply the Full 3D wavelets transform. The classic
square wavelets transform method produces a multidimen-
sional wavelets transform by applying one level of the one-
dimensional (1D) transform separately in all dimensions and
then iterating this procedure on the approximation cube. The
other way of obtaining a multidimensional wavelets trans-
form consists first of computing all the desired decomposi-
tion iterations along one dimension, then all the desired it-
erations on the next dimension, and so on. This method is
called the hybrid rectangular/square wavelets transform. We
depict these two principles in Fig.2.We use the classic square
wavelets transform in the Full 3D approach followed by 3D-
SPIHT algorithm and the hybrid rectangular/square wavelets
transform is used in the Hybrid approach.

(a)

(b)
Figure 2. Graphical representation of the two ways of 3D wavelets
decomposition: (a) square decomposition by its first and second
steps; (b) hybrid rectangular/square wavelets decomposition with
two spatial decompositions followed by two spectral decomposi-
tion.

This Full 3D implementation of the wavelets transform
takes into account the high spectral correlation of the image
and its anisotropy.

Third approach – Hybrid

The third approach consists of applying a Full 3D
wavelets transform on the PCA result as in the Full 3D ap-
proach. But the square wavelets transform is replaced by a
hybrid rectangular/square wavelets (Fig.2) as used by Penna
et al. in (Penna et al., 2006). This wavelets transform takes
into account the multispectral image properties. But the
fact that this wavelets transform has two differentiated stages
(spatial transform is followed by spectral transform) allows
its result to be considered as multiple 2D plans. For this rea-
son we apply 2D SPIHT coding on each resulting band to
achieve compression as in the Multi-2D approach. In order
to take the difference of energy bands into account we weigh
each band with its energy E as in equation (1).

Compression evaluation
framework

When lossy compression methods are used, quality mea-
surements are necessary to evaluate performance. According
to Eskicioglu (Eskicioglu & Fisher, 1995), the main problem
in evaluating lossy compression techniques is the difficulty
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of describing the nature and importance of the degradation
on the reconstructed image. Furthermore, in the case of ordi-
nary 2D images, a metric often has to reflect the visual per-
ception of a human observer. This is not the case for hyper-
spectral images, which are first used through classification or
detection algorithms. Therefore, metrics must correspond to
applications. This is why instead of evaluating compression
performances according to one metric or one type of metric,
we propose the utilization of eight known metrics belonging
to three categories to do so. We call this a framework for
compression evaluation. In (Christophe, Léger, & Mailhes,
2005), Christophe et al. show that the use of a set of metrics
is more relevant than using just one.

The metrics we propose can be divided into three fam-
ilies: signal processing isotropic extended metrics (PSNR,
RRMSE, MAE and MAD), spectral oriented metrics (Fλ,
MSA and GFC), and an advanced statistical metric taking
some perceptive aspects into account (UIQI). We use the
PSNR in order to facilitate comparison with other methods,
since it is the metric most employed in image compression.

In the following sections this notation will be used: I is the
original multispectral image and Ĩ is the reconstructed mul-
tispectral image. The multispectral images are represented
in three-dimensional matrix form: I(x, y, λ), x is the pixel
position in a row, y the number of the row and λ the spectral
band. nx, ny, nλ respectively the number of pixels in a row,
the number of rows and the number of spectral bands.

We also introduce the notation I(x, y, ·) stands for
I(x, y, ·) = {I(x, y, λ) | 1 ≤ λ ≤ nλ}. In this case I(x, y, ·)
corresponds to a vector of nλ components.

For simplification, we note I(x, y, λ) and Ĩ(x, y, λ) by I and

Ĩ, and also
nx�

x=1

ny�

y=1

nλ�

λ=1

I by
�

x,y,λ

I.

Signal processing isotropic extended metrics
These metrics come from classic statistical measures.

They do not take into account the difference between spatial
and spectral dimensions. The structural aspect of errors does
not appear.

Relative root mean square error (RRMSE). It is a classic
statistical measure based on MSE (Lp norm) with a normal-
ization by the signal level.

RRMSE(I, Ĩ) =

���
1

nxnynλ

�

x,y,λ

�
I − Ĩ

I

�2
(2)

Mean absolute error (MAE).

MAE(I, Ĩ) =
1

nxnynλ

�

x,y,λ

���I − Ĩ
��� (3)

Maximum absolute distortion (MAD). The MAD is used
to give a upper bound on the entire image.

MAD(I, Ĩ) = max
����I − Ĩ

���
�

(4)

Spectral oriented metrics
These metrics are specially adapted for the multispectral

field.

Goodness of fit coefficient (GFC).

GFC(I, Ĩ) =

��������

�

j

RI(λ j)RĨ(λ j)

��������
��������

�

j

�
RI(λ j)

�2
��������

1
2
��������

�

j

�
RĨ(λ j)

�2
��������

1
2

(5)

where RI(λ j) is the original spectrum at wavelength λ j and
RĨ(λ j) is the reconstructed spectrum at the wavelength λ j.

The GFC is bounded, facilitating its understanding. We
have 0 ≤ GFC ≤ 1. The reconstruction is very good for
GFC > 0.999 and perfect for a GFC > 0.9999.

Spectral fidelity Fλ. This metric was developed by Eski-
cioglu (Eskicioglu & Fisher, 1993). We define fidelity by :

F(I, Ĩ) = 1 −

�

x,y,λ

�
I − Ĩ
�2

�

x,y,λ

[I]2
(6)

We will take into account the following adaptation focus on
spectral dimension to obtain spectral fidelity:

Fλ(I, Ĩ) = min
x,y

�
F
�
I(x, y, ·), Ĩ(x, y, ·)

��
(7)

Maximum spectral angle (MSA). The MSA is a metric
used in (Keshava & Mustard, 2002). The spectral angle rep-
resents the angle between two spectra viewed as vectors in
an nλ-dimensional space.

SAx,y = cos−1




�

λ

I.Ĩ

��

λ

I2
�

λ

Ĩ2




(8)

In our case we take the maximum of SA with:

MSA = max
x,y

�
SAx,y

�
(9)

Universal image quality index (UIQI)
The UIQI was developed by Wang (Wang & Bovik, 2002)

for monochrome images. This metric uses structural distor-
tion rather than error sensibility. It is an advanced statistical
metric. The UIQI is based on three factors: loss of correla-
tion, luminance distortion and contrast distortion.

Q(U,V) =
4σUVµUµV�

σ2
U + σ

2
V

� �
µ2

U + µ
2
V

� (10)
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with σUV the cross correlation E
�
(U − µU) (V − µV )

�
, µ is

the mean and σ2 the variance. The result is bounded by:
−1 ≤ Q ≤ 1.

The UIQI can be applied in three different ways, on each
band, on each spectrum of the image or on both. We use it
on each spectral band of the image as follows:

Qx,y = min
λ

�
Q
�
I(·, ·, λ), Ĩ(·, ·, λ)

��
(11)

Experiments and results

We conducted our experiments on the largely used
AVIRIS2 images SanDiego, JasperRidge and MoffettField
(Fig. 3). These images represent very different land-
scapes, JasperRidge represent uniform spatial area whereas
SanDiego represents an airport and MoffettFiel represents an
urban landscape with many high frequencies.

Experiments

First experiment. The first experiment we conducted
aimed to compare the performance of the three approaches
regarding different compression bitrates when using different
spatial dimensions of images. We conducted the experiments
on 32 bands of the SanDiego image with spatial dimensions
of 64 ∗ 64, 96 ∗ 96 and 128 ∗ 128 pixels, on 32 bands of
the JasperRidge and MoffettField images with with spatial
dimensions of 64 ∗ 64 and 128 ∗ 128 pixels. All images are
coded in 16 bit integer.

Second experiment. The second experiment sought to
evaluate the performance of the three approaches regard-
ing different compression bitrates when the number of bands
changes. So we used different spatial sizes of the SanDiego
multispectral image with a different number of bands (32, 64,
96, 128, 160 and 192).

Results

Representing the results of the experiments within the
framework of eight metrics is difficult. A good way to rep-
resent the results is to use a star (radar) diagram (As in
(Christophe, Léger, & Mailhes, 2008)) which gives a more
intuitive vision than a classical x-y representation in this
case. The eight axes of the diagram correspond to the eight
metrics. All star diagrams have the same scale, minimum and
maximum are given on each axis for graphical interpretation
and ease of comparaison. Axis of RRMSE, MAD, MAE and
MSA are inverted, the extremity corresponds to minimum
degradation and the origin of the axeis corresponds to max-
imum degradation. This representation permits good read-
ability but does not allow us to show bitrate variation. That
is why in Fig. 7 and 8 we only show results for a bitrate of
1 bpp.

Results in terms of PSNR for the SanDiego image are
shown in Fig. 5 and 6 and for other metrics in Fig. 7 and 8.
Results for JasperRidge and MoffettField images are shown
in Fig. 4.

(a)

(b)

(c)
Figure 3. Multi/hyperspectral Aviris images we used in our exper-
iments, (a) SanDiego , (b) JasperRidge and (c) MoffettField

2 http://aviris.jpl.nasa.gov
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First experiment results. The results of the first experi-
ment (regarding image spatial dimension variations) are rep-
resented in figure 4 in terms of PSNR for the Cuprite image.

Results show that compression results for the three used
images have the same trend. This trend is characterized by
the Full 3D approach which outperforms Multi-2D and Hy-
brid approaches for high bitrate values. For small bitrate val-
ues the Multi-2D approach gives the best results. The Hy-
brid approach never has the best results. The results for all
approaches decreases when the spatial image dimensions in-
crease.

Second experiment results. The results of the second ex-
periment (regarding image spectral dimension variations) in
terms of PSNR are represented in figures 5, 6, 7 and 8 for the
SanDiego image.

Graphics show that Multi-2D and Full 3D approaches
have the best results for a number of 96 spectral bands. When
the number of spectral bands deviates from this value, the
results proportionally decrease. For the Hybrid approach
PSNR results increase proportionally to the number of bands.

The star diagrams show that all metrics don’t have the
same results. It’s particularly visible for the Hybrid approach
with PSNR, GFC, MAD, MAE and UIQI which have similar
results but for RRMSE, Fλ and MSA have inverted results.
For the Multi-2D and the Full 3D approaches all the results
are similar except regarding to UIQI metric.

Speed and memory consumption
comparison

We can estimate speed and memory need for each com-
pression approach by comparing it to the two others for each
part of the compression.

First we applied spectral PCA for all approaches, taking
the same amount of time and memory. Secondly we applied
wavelet decompositions. For the Full 3D and Hybrid ap-
proaches, decompositions are very similar and are performed
on the entire image, taking similar computation time and
computation memory. For the Multi-2D approach it depends
on the implementation of the algorithm. If we consider each
band of the image separately, the decomposition of the entire
image takes a little more time than 3D decompositions, but
less memory (a ratio equal to the number of bands). We can
also apply all 2D decompositions to the image at the same
time: the spectral wavelet decomposition time is less, but
requires as much memory as in 3D decompositions. Finally
we applied SPIHT and 3D SPIHT algorithms. These algo-
rithms are identical, the only differences are the number of
pixels with children (three over four for SPIHT and seven
over eight for 3D SPIHT), the number of children (four for
SPIHT and eight for 3D SPIHT) and their positions. The 3D
SPIHT is slower than SPIHT and also takes more memory.

The speed and memory used by the three algorithms de-
pend on image complexity but also on algorithm implemen-
tations. The Multi-2D approach is the fastest, ahead of the
Hybrid approach; the Full 3D approach is the slowest. The
Full 3D approach also requires more memory than the two
others. For large spatial dimension images the results show

(a)

(b)

(c)
Figure 4. Compression results for (a) SanDiego, (b) JasperRidge
and (c) MoffettField images in terms of PSNR
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Figure 5. Compression result in terms of PSNR for 32, 64 and 96
bands of the SanDiego image.

Figure 6. Compression result in terms of PSNR for 128, 160 and
192 bands of the SanDiego image.
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Figure 7. Compression result for 32, 64 and 96 bands of the
SanDiego image with a bitrate of 1 bpp.

Figure 8. Compression result for 128, 160 and 192 bands of the
SanDiego image with a bitrate of 1 bpp.
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that it is better to use high bitrate values to limit degradations
introduced by the compression.

Discussion
The two experiments we performed allow us to see the

effects of variations in spatial and spectral dimensions on
compression approaches. A general trend is observed: for
small values of bitrate the Multi-2D approach gives the best
results and for high values the Full 3D approach gives the
best results. Results of the Hybrid approach fall between the
two others.

This trend could be explained by two major points:
• For small values of bitrates, the Full 3D approach gives

bad results because the 3D SPIHT used in this approach use
lists (list of significant and insignificant pixels, list of in-
significant sets) which grow very fast compared to lists of
2D SPIHT (each pixel has eight children for the 3D version
and only four in 2D). And for high values of bitrates fewer
coefficients are added to the lists. This could explain the fact
that the Multi-2D approach gives better results than the Full
3D approach only for small values of bitrates.
• The Hybrid approach gives inferior results because it

is a combination of 2D and 3D approaches. So using a 2D
SPIHT after a 3D decomposition is not the best method.

Our results are contradictory to those of Penna et al.
(Penna et al., 2006) who compare Full 3D and Hybrid ap-
proaches. The authors found that the Hybrid method gives
better results than the 3D method. In their article, they com-
pared wavelet decompositions in various types of hybrid and
3D approaches within. Then the results obtained showed that
the square 3D wavelets decomposition gives results which
are not as good as the hybrid rectangular/square wavelets de-
composition. We could probably explain this by the fact that
Penna et al. use the same filter (CDF 9/7) for each dimen-
sion thus ignoring multispectral image anisotropy and high
spectral correlation.

Conclusion
In this article, we have compared three approaches of mul-

tispectral image compression. These approaches are Multi-
2D, Full 3D and Hybrid compression approaches, combined
with a PCA decorrelation. The comparison of these ap-
proaches is performed within a framework containing eight
metrics belonging to three different categories: signal pro-
cessing isotropic extended metrics, spectral oriented metrics,
and perceptive metrics. All metrics show the same trend:
the Multi-2D approach is better than the Full 3D approach
for low bitrate values, but this trend is inverted for higher
bitrate values. The Hybrid approach has intermediate results
or results which are inferior to the two other approaches.
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