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Spatially variant dimensionality reduction for
the visualization of multi/hyperspectral images
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1Le2i, Université de Bourgogne, Auxerre, France
2Colorlab, Hegskolen i Gjovik, Norway

Abstract. In this paper, we introduce a new approach for color visu-
alization of multi/hyperspectral images. Unlike traditional methods, we
propose to operate a local analysis instead of considering that all the
pixels are part of the same population. It takes a segmentation map as
an input and then achieves a dimensionality reduction adaptively inside
each class of pixels. Moreover, in order to avoid unappealing discon-
tinuities between regions, we propose to make use of a set of distance
transform maps to weigh the mapping applied to each pixel with regard
to its relative location with classes’ centroids. Results on two hyperspec-
tral datasets illustrate the efficiency of the proposed method.

1 Introduction

Spectral imagery consists of acquiring a scene at more than three different ranges
of wavelengths, usually dozens. Since spectral display devices are yet rare, most
of today’s popular display hardware is based on the tri-stimulus paradigm [1].
Thus, in order to visualize spectral images, a dimensionality reduction step is
required so that only three channels (Red, Green and Blue for example) can
contain most of the visual information while easing interpretation by preserving
natural colors and contrasts [2]. At this aim, many dimensionality reduction
techniques have been applied to the task of visualizing spectral datasets, they
are roughly divided into two categories: either they operate a transformation
or a selection of spectral channels. Even though the latter family is a subset of
the former one, they are based on two very different philosophies. Indeed, band
selection aim at preserving the physical meaning of spectral channels by keeping
them intact during the N-to-8 projection, whereas band transformation allows
any combination of channels (even nonlinear) as a means to fuse information
along the spectrum. Therefore, the choice between these two approaches is
of course application-driven. Band transformation methods are, for instance,
based on the use of Principal Components Analysis (PCA) [3,4], Color Matching
Functions (CMF) [5,2] or Independent Components Analysis [6]. Band selection
strategies involve the use of similarity criteria such as correlation [7], Mutual
Information [8] or Orthogonal Subspace Projection [9]. All these methods are
based on the assumption that all the pixels are part of the same population, i.e.
they perform a global mapping. Scheunders [10] proposed to spatially divide



the image into blocks in order to achieve local mappings by means of PCA and
Neural Network-based techniques. Discontinuities between blocks are dealt with
by adapting the mappings at a pixel level. Not only do we propose to extend
Scheunders’ approach from a greyscale to a color framework, we enhance it in two
ways: by using a classification map so as to choose which visual features deserve
a local contrast enhancement, and by introducing a weighing function allowing
to balance not only the influence of global versus local mapping, but also the
respective influences of the individual classes. We will first introduce the different
steps of the proposed approach: classification map, distance transforms and
weighing of dimensionality reduction functions. Results will then be presented
and discussed before conclusion.

2 Spatially variant dimensionality reduction

In this section, we give details on the different elements involved in the procedure.

2.1 Segmentation map

The first step of the proposed technique is to obtain a spatial segmentation of
the image. This can be achieved either manually or automatically, by means
of classifiers such as the K-Means, or Support Vector Machines. The choice
of such a method is considered outside the scope of this paper as long as it is
application-dependent and that the following processings apply anyway.

Let then Segy (I) be a segmentation map of image I containing K classes.
While traditional methods consider each spectral channel as a whole, the core
idea of the spatially variant dimensionality reduction is to analyze sets of pixels
independently. For instance, if one desires to enhance the contrast between a
couple of specific objects, one must consider the corresponding set of pixels sep-
arately from the others, in order to obtain a more dedicated analysis. Therefore,
the final segmentation map must be computed not in a way that similar pixels
are clustered together, but so that each class contains objects that need to be
”separated”.

2.2 Distance transform

In order to locally adapt the dimensionality reduction so that no discontinuities
occur between regions, we need to know, for each location in the image, the
distance to the closest centroids of each class. The distance transform is a way to
efficiently achieve such measurements. It applies on binary images and consists
of computing for each pixel with value 0 (black), its distance to the closest one
with value 1 (white). Therefore, we need a set of binary images containing, in
white, all the centroids of the different connected components from class C; and
all the other pixels in black. We obtain such distance transform maps as the ones
depicted in Figure 1c and 1f. Eventually, for a pixel p&y) at spatial coordinates

(x,y), belonging to class ¢;, we obtain the set of its respective distances to the



other classes centroids d(z,y) = [d1(x,y), ..., dx (z,y)]T, including the distance
to the closest centroid of its own class.
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Fig. 1. Illustration of the distance transform applied on two possible segmentation
maps for the ”Jasper Ridge” dataset (see results section for full description). First
column: segmentation maps (4 classes), Second column : class 1 isolated in white,
Third column: the corresponding distance transforms. The first segmentation has
been achieved manually, whereas the second one is the result of the K-means classifier.

2.3 Weighing of dimensionality reduction functions

Dimensionality Reduction (DR) is then performed in each class independently
from the others so that we obtain as many sets of DR functions as there are
classes. Moreover, a global mapping is also performed so as to be able to further
balance between global and local mapping. What we refer to as a DR function

is nothing more than a vector of coefficients used for fusing the spectral channels

in order to obtain one of the three (Red, Green or Blue) primary bands. For
instance, the Color Matching Functions (CMF) are such vectors.

Each pixel is then being affected with a set of weighted DR functions DRE¢?(z, y),

DRETeen(z,y) and DRB™¢(z,y) such that:
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DREd(z, y) = wy x DRI+ (1 —wp) X




with wo being the parameter allowing to balance between global and local
mappings and w = [w1, ..., wx]|T, the vector of coefficients depicting the respective
influences of the classes (its sum must be equal to one). The latter can be set
manually or automatically, so that, for example, largest classes are given more
weight. DR is the global DR function and DR Vi e [1..K] are the local
ones. Similar definitions apply of course for DRE™¢"(z, y) and DRB™e(z, y).

3 Experiments and results

3.1 Data sets

For our experiments, we have used two hyperspectral datasets:

— ”Jasper Ridge” is a well-known 220 bands image from the AVIRIS sensor
[11]. We have used only a portion of the original dataset for the sake of
clarity.

— "Norway” is a 160 bands remote sensing image, representing a urban area in
the neighborhood of Oslo (Norway). It was acquired with the HySpex VNIR-
1600 sensor, developed by the Norsk Elektro Optikk company in Oslo. The
sensor ranges from the early visible (400nm) to the near infrared (1000nm)
with a spectral resolution of 3.7 nm [12].

As a pre-processing step, bands with average reflectance value below 2% and
those with low correlation (below 0.8) with their neighboring bands have been
removed, as suggested in [13].

3.2 Dimensionality reduction techniques

We have selected two dimensionality reduction techniques to illustrate the pro-
posed approach.

— PCAps, is the traditional Principal Components Analysis of which compo-
nents are mapped to the HSV color space (PC1 — V; PC2 — S; PC3 — H).

— LP is a state-of-the-art band selection approached which has been proposed
by Du et al. [9] and consists of progressively selecting bands by maximizing
their respective orthogonality.

3.3 Evaluation

In order to evaluate the improvements by the proposed approach, we have, based
on a K-means classification, selected 3 objects (or classes) of interest (Obj1, Obja
and Objs) in each image and used the color difference metric CIE76 AE,;* as
a means to measure how contrasted they are. Obviously, the more they are
contrasted, the more visual information we have. This metric has been applied
on the objects’ centroids (in the color space CIELAB). The objects of interest are
depicted on Figure 2 for both datasets. For the spatially-variant dimensionality
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Fig. 2. Selected classes of interest (Obj1 in red, Obj2 in green and Objz in blue)

reduction, we have then used a segmentation map so that we obtain the three
classes : C1 = {Obj1 UObj2}, Co = Objs and C5 = {rest of the pixels}, as shown
in Figures 2b and 2d.

The object-separability metric will be referred to as Inter-Object Perceptual
Separability (IOPS)

3.4 Results

Figures 3 and 4 depict respectively the resulting color composites by the global
mappings (wp = 1) and the local mapping (wy = 0) without smoothing. Figure
5 depict the obtained color composites while Tables 1 and 2 give the results in
terms of IOPS for the following configurations:

— Config 1: wg=0and w = [%,%,%]
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Fig. 3. Results obtained for wo = 1 (global only). First row: PCAjs.,, second row:
LP-based band selection

4 Comments on the results

Based on the results presented in the previous section, we make the following
remarks:

— The absence of weighing of the DR functions results in sharp discontinuities,
as one can notice on Figures 4. Such artifacts are quite unappealing and
thus do not allow for an efficient interpretation, hence the usefulness of the
smoothing achieved by the weighing of the DR functions.
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Fig. 4. Results obtained for wo = 0 and without weighing of the DR functions. First
row: PCApsy, second row: LP-based band selection

— Overall, one can observe significant improvements from global to local tech-
niques in the separation of Objects 1 and 2. On the other hand, separation
between Objects 1 and 3 is better handled by the global approach. This
comes from the fact that those three objects are given the same mapping in
the global configuration, unlike in the local one.

— The second configuration always gives the best separation between Objects
1 and 2. This is due to the fact that this configuration gives more weight to
the DR achieved in the class formed by these objects.

— The global DR allows for an overall better separation but local contrasts are
not optimized, since better results are obtained from the first configuration,
where all the classes are considered of equal influence. As a follow to that
comment, the fourth configuration, which uses a 50-50 combination of global
and local mappings gives the best compromise between both separations.



Fig.5. Results obtained with the PCA-based dimensionality reduction, for all the
configuration - First column: Config 1, second column: Config 2 , third column: Config
3,, fourth column: Config 4

(8)

Fig. 6. Results obtained with the LP-based dimensionality reduction, for all the con-
figuration - First column: Config 1, second column: Config 2 , third column: Config
3,, fourth column: Config 4

5 Conclusions

An adaptive feature extraction algorithm has been presented, which takes into
account dissimilarities between pixels by first clustering them and then conduct-
ing dimensionality reduction separately in each cluster. Preliminary results show



PCApsy| LP
Obj1 vs. Obja|| 19.3 [21.4
Obj1 vs. Objz|| 31.0 [12.2
Obj1 vs. Obja|| 35.7 [34.3
Ob]l Vs. Objg 21.2 11.3
Obj1 vs. Obja|| 44.4 [39.0
Ob]l Vs. Objg 26.1 11.0
Obj1 vs. Obja|| 34.0 |[31.5
Ob]l Vs. Objg 21.3 10.3
Obj1 vs. Obja|| 27.3 [30.9
Ob]l Vs. Objg 26.2 11.2
Table 1. Inter-Object Perceptual Distance results for the ”Jasper Ridge” image and
for all the configurations considered

Global

Config 1

Config 2

Config 3

Config 4

PCApsy| LP
Obj1 vs. Obja|| 44.8 [65.3
Obj1 vs. Objs|| 24.2 |37.0
Obj1 vs. Obja|| 56.0 |68.0
Obj1 vs. Objs|| 21.3 |27.7
Obj1 vs. Objz|| 70.3 |74.5
Obj1 vs. Objs| 22.1 |27.6
Obj1 vs. Obja|| 60.1 |[71.2
Ob]l Vs. Objg 24.0 28.6
Obj1 vs. Obja|| 48.8 [73.4
Ob]l Vs. Objg 22.7 31.2
Table 2. Inter-Object Perceptual Distance results for the "Norway” image and for all
the configurations considered

Global

Config 1

Config 2

Config 3

Config 4

an increasing amount of informative as well as perceptual content. The tech-
nique being obviously very sensitive to the pixel clustering conducted prior to
dimensionality reduction, this step will be further investigated along with the in-
fluence of other feature extraction techniques as well as other distance metrics in
order to draw a more complete evaluation of the spatially-variant dimensionality
reduction.
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