An Approximating-Interpolatory Subdivision Scheme.

Abstract : In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces ner and ner meshes with quads and triangles (Fig. 1). Design- ers often want to model certain regions with quad meshes and others with triangle meshes to get better visual qual- ity of subdivision surfaces. Smoothness analysis tools exist for regular quad/triangle vertices. Moreover C1 and C2 quad/triangle schemes (for regular vertices) have been con- structed. But to our knowledge, there are no quad/triangle schemes that uni es approximating and interpolatory sub- division schemes. In this paper we introduce a new subdivision operator that uni es triangular and quadrilateral subdivision schemes. Our new scheme is a generalization of the well known Catmull- Clark and Butterfly subdivision algorithms. We show that in the regular case along the quad/triangle boundary where vertices are shared by two adjacent quads and three adjacent triangles our scheme is C2 everywhere except for ordinary Butterfly where our scheme is C1.
Type de document :
Article dans une revue
International Journal of Pure and Applied Mathematics, Academic Publishing Ltd, 2011, 71 (1), pp.129-147
Liste complète des métadonnées
Contributeur : Sandrine Lanquetin <>
Soumis le : mardi 8 novembre 2011 - 11:42:44
Dernière modification le : mardi 8 novembre 2011 - 11:47:23
Document(s) archivé(s) le : jeudi 9 février 2012 - 02:30:58


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00639051, version 1



Yacine Boumzaid, Sandrine Lanquetin, Marc Neveu, François Destelle. An Approximating-Interpolatory Subdivision Scheme.. International Journal of Pure and Applied Mathematics, Academic Publishing Ltd, 2011, 71 (1), pp.129-147. <hal-00639051>



Consultations de
la notice


Téléchargements du document