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Abstract

In the last decade, study and construction of quad/triangle
subdivision schemes have attracted attention.

The quad/triangle subdivision starts with a control mesh
consisting of both quads and triangles and produces finer
and finer meshes with quads and triangles (Fig. 1). Design-
ers often want to model certain regions with quad meshes
and others with triangle meshes to get better visual qual-
ity of subdivision surfaces. Smoothness analysis tools exist
for regular quad/triangle vertices. Moreover C! and C?
quad/triangle schemes (for regular vertices) have been con-
structed. But to our knowledge, there are no quad/triangle
schemes that unifies approximating and interpolatory sub-
division schemes.

In this paper we introduce a new subdivision operator
that unifies triangular and quadrilateral subdivision schemes.
Our new scheme is a generalization of the well known Catmull-
Clark and Butterfly subdivision algorithms. We show that
in the regular case along the quad/triangle boundary where
vertices are shared by two adjacent quads and three adjacent
triangles our scheme is C? everywhere except for ordinary
Butterfly where our scheme is C.
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1 Introduction

Since their first appearance in 1978, subdivision algorithms for gen-
erating surfaces of arbitrary topology have gained widespread pop-
ularity in computer graphics and are being evaluated in engineering
applications. This development was complemented by ongoing ef-
forts to generate appropriate mathematical tools for a thorough
analysis, and today, many of the fascinating properties of subdi-
vision are well understood. Subdivision surfaces were introduced
in 1978 by both Catmull and Clark [7] and Doo and Sabin [9].
They both generalized tensor product B-spline of bi-degree three
and two respectively to arbitrary topologies by extending the re-
finement rules to irregular parts of the control mesh. Later, in
1987, Loop studied behavior of recursive subdivision surfaces near
extraordinary points and generalized triangular box-splines of total
degree four to arbitrary triangular meshes in [10].

The visual quality of a subdivision surface is highly dependent
on the initial mesh of control points. For general shapes, designers
often want to model some areas with triangular patches, and others
with quad patches. So to combine advantages of both surfaces, it is
often desirable to have surfaces that have a combined quad-triangle
patch structure.

In 2003, Stam and Loop [6] introduced a generalization of the
Loop and Catmull-Clark subdivision that unifies these schemes and
operate on mixed quad/triangle surfaces. The subdivision scheme
reproduces Loop subdivision on triangular portions of the mesh
and Catmull-Clark subdivision on quadrilateral polygons. The
quad/triangle boundary is subdivided with an averaging mask of
Catmull-Clark and Loop subdivision in the quad/triangle bound-
ary. Stam and Loop showed that their scheme is C? everywhere
except for extraordinary points and the ordinary quad/triangle
boundary where their scheme is C'. To remedy this smoothness
problem along ordinary quad/triangle edges, Levin and Levin [5]
introduced a set of modified rules along the quad/triangle bound-
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ary. The authors also presented the concept of an "unzippering”
mask. Like Levin and Levin, Schaefer and Warren [8] used an
unzippering mask during subdivision. Then the authors proved
that these modified rules generate a surface that is C? across the
quad/triangle boundary.

In 2009, Jiang et al [1] introduced an interpolatory quad/triangle
subdivision scheme.

All the quad/triangle schemes available in the literature are only
approximating schemes or only interpolatory schemes. In reverse
engineering, 3D data points on surfaces often come from 3D optical
measurement (for instance a 3D laser scanner). It may be useful
to produce interpolatory schemes to fit 3D data with enough confi-
dence and only approximating schemes on noisy data for instance.
In CAGD, constraint may be imposed on parts of objects. These
constraints may have a variable tolerance (from 0 for interpola-
tory constraints to e for allowed geometric inaccuracies in relative
locations and shapes of features giving raise to approximating con-
straints). In these approaches, any combination of interpolatory
scheme (either on quads or triangles) and approximating scheme
(again on quads or triangles) may be desired. We shall limit our-
selves here on an approximating quad interpolatory triangle scheme.

To construct an approximating/interpolatory quad/triangle scheme,
one first needs to choose an approximating scheme for quad vertices
and choose an other interpolatory scheme for triangle vertices. The
Catmull-Clark scheme and the Butterfly scheme in [4] and its mod-
ified version [11] are probably the most popular approximating and
interpolatory schemes for quad vertices and for triangle vertices
respectively.

Figure 1: A quad/triangle subdivision.

The present paper is organized as follows. In Section 2, we give
the formal definition of the quad/triangle subdivision schemes and
some properties of quasi-interpolants are given. Then we present



our method to construct a subdivision scheme that unifies an ap-
proximating (Catmull-Clark) and an interpolatory (Butterfly) sub-
division schemes in the regular case. We explain how to calculate
the weight stencils of our scheme in section 3. The eigenanalysis
of our subdivision scheme is detailed in section 4. In section 5, we
give some results of applications of our subdivision scheme. Finally,
conclusion and future work are given in section 6.

2 Background

In this section we give the formal definition of the quad/triangle
subdivision schemes, since the framework of quasi-interpolants and
the theory of polynomial generation are particularly useful for com-
bining two uniform stationary subdivision schemes along a common
boundary.

2.1 Notations

Let C = C™(R?®) denote the space of all m-times differentiable
functions from R® to R whose m-th order derivatives are continuous.

The function space of polynomials of degree< m over the domain
X CR?is:

[, (X) = span{ fIf : X — R, f(x) = 2,0 < |i] < m}.

We refer to P € [ as a set of control points, where | = [(Z°)
denotes the collection of all sequences P : Z° — R. For the identity
operator Id : X C R* — R®, we have Id(x) = z,Vz € X

Let 7 = (J1,72,------Js) € Z°, and x € R®. Then in multi-index
notation, we have:

1l = el il 3 2 05 G i) 2 (0,0,

J 1,02 J
x) =zt ale. ;
. : olil ¢
J A A —
For j > 0, we use D’ f = ey i a = farzg. aa-

Entries of a multi-index sequence PP € [ are denoted by F;, for
Jj € (Z?), and SP € I by (SP)(;), where S is a subdivision operator.
Let A € R*. For arithmetic operations on subsets of X C R*® we
define:
AX ={\z |z € X}

X+z={r+zjzr € X,z € R%}
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We denote by o the dilation operator on C, which appears nat-
urally in the context of stationary subdivision:

2.2 Quad/triangle subdivision

The following framework is a specialization of the more general
definition of non uniform subdivision introduced in [5]. We consider
a quasi-uniform grid X € R2, namely a grid which is uniform in
each of the half planes, X > 0 and X < 0, and such that (X =
{(,j+1)|(4,7) € X} = X, 2X C X and U2 ;27" X = R? as shown
in Fig. 2.

Figure 2: A quad/triangle grid.

Let I(X) denote the space of all control point sequences [(X) =
{P|P : X — R}. The subdivision operator S is a linear operator
on I(X),S : I(X) — I(X). A stationary subdivision scheme is
defined as the repeated application of S to the given control points
P e l(X). S issaid to be convergent, if for every P € [(X), there
exists F € C(R?) (called the limit function) such that

Tim [[S™P = F(27")[|oo, xn2np = 0, (1)

for any open and bounded domain D C R%. We denote S®P =
F. 1t is also required, as part of the definition of uniform con-
vergence, that S®P is nonzero for some P. Notice that although
S™P is formally defined as a sequence over X, the value S P(x) for
x € X, is associated with the value of the limit function at 27",
as implied by (1). S is C™ if S*P € C™(R?) for any P € I(X). A
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quasi-uniform bivariate scheme consists of different uniform rules
on each side of the y-axis, far enough from the axis, and of different
rules near the y-axis. This scheme is uniform in the y-direction.
S is assumed to be C"™ continuous away from the y-axis, and the
bivariate scheme is assumed to generate II,,, the space of bivariate
polynomials up to degree m. The last requirement implies the ex-
istence of an inverse @) of S* on II,,,. Levin in [2] shows that every
stationary uniformly convergent subdivision scheme satisfies

S®(P) = jzm TDf Vf € 1L (R?), (2)

il
in which the moments m; are given by:
mi = ) ®(=P)5" (3)
BEeZs

Equation (2) expresses the operator S* : IL,,(Z°*) — IL,,(R?®)
as a linear combination of differential operators. The operator () :
IL,,,(R?) — I1,,(Z®) that satisfies

$*Q = Id, (4)

is called the quasi-interpolant of the scheme S.

Using equations (2),(3) and (4) the quasi-interpolants operators
of cubic B-spline and Catmull-Clark subdivision schemes are given
by equations (5) and (6):

Qf = f = §(fax + fr) Vf €T (6)
Note that the quasi-interpolant operator of an interpolatory
scheme is given by:

Qf=[ Vfelly. (7)
The important properties of the quasi-interpolant operator @)

are summarized in the following theorem of Levin [2].

Theorem 1. IfS is a convergent subdivision scheme, if S* is
an injection, and the quasi-interpolant operator () preserves leading
coefficients, then:

SQf =Qof = 5TQf = f,Vf €1l (8)



Note that @ : I1,, — L(X) preserves leading coefficients if
fe Iy = [Qf(X) = f(X)| =0 as || X|| = o0,z € X, (9)

for all k < m.

From this theorem we get important information about the
eigenvalues and the eigenvectors of S. Considering a monomial
f = a7, with i + j < m, it follows that o f = 270%9) f and thus:

SQ(a'y') = Qo(a'y’) = 27"Q(a"y’) i+ j <m,  (10)

where Q(z'y?) is an eigenvector of the scheme for ¢ + 5 < m asso-
ciated with the eigenvalue 27,

3 Approximating-Interpolatory Subdi-
vision scheme

Considering the quad/triangle grid in Fig. 2, we would like to de-
fine a quasi-uniform scheme over this grid which coincides with the
tensor product cubic B-spline scheme, or the Catmull-Clark subdi-
vision scheme, on the left half-plane and the Butterfly subdivision
scheme on the right half-plane.

The stencils of these two schemes in the regular case are given
in Fig. 3.

The goal is to define special rules on the y-axis and near it.
These special rules are constructed together with the quasi-interpolant
operator (), which also requires a special definition near the y-axis,
so that the condition SQ = Qo holds for II; over the entire plane.
The quasi-interpolant operator () over the triangle/quad grid is
given by:

Qf:{ Q_f:f_%(fxx+fyy> x<0

QTf=f x>0

where @~ and Q7 satisfy the required equation (3), with m = 2,
for the left and right schemes, respectively. Given this choice of @),
the special subdivision rules near the y-axis are defined by requiring
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Figure 3: The stencils in the regular case:(a) the Catmull-Clark
scheme, (b) the Butterfly scheme.

the conditions (10), for m = 2. The choice Q = @~ on the y-
axis is somewhat arbitrary. Different choices of @) lead to different
subdivision rules. By experimenting with other choices of ) on
the y-axis, we found that for some of them there does not exist
subdivision schemes S. So for the choice ) = @~ on the y-axis the
system of equations coming out of (5) is solvable, but the solution
is not unique. The challenge is to find a scheme with a support as
small as possible which fulfills (10)(shown in Fig. 5.).

3.1 Construction

To construct the subdivision operators S, over the supports ) =
{(i,4),i< 0,5 € Zy U{(i,7),i > 0,j € Z}
j+si, i<0

i i>0

we apply the Catmull-Clark subdivision scheme for ¢ < 0, and
the Butterfly subdivision scheme for ¢ > 0. Therefore, we need to
redefine S for all (7,j) € X such that —1 <4 <2 (shown Fig. 4.).

with: j =



Jl
Q Subdivision 2J1 EQ
i ] \,/I 2
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~ 25— <
j-1 |\:/
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-1 ol 1 2 -10 1 2

Figure 4: the tri/quad grid in the left and it’s refined grid in the
right.

Construction of (SP)(; ;) near the y-axis

Consider a portion of a regular triangular net with vertices F; 5,1 €
j+s3i, i<0
i i>0Y
fined net can be classified into two distinct groups.
e The edge-points (SP) o;_y) (Fig. 5-(c)):
(SP)1.25-1) = @000 j1) + @01 B0 ) + @020 5-1)

0,2],7 = € Z. The points (SP); 5 of the re-

i7j

+aosP 5) + aoaPy 51y + a0sPa 1y (11)

e The edge-points (SP) o5 (Fig. 5-(d))
(SP) (125 = a1 P j1) + a12F5) + a1sFg 51

+a1aBjiy + 5Py + 6P+ arPg; gy (12)

Construction of (SP) ;) on the y-axis

Consider a portion of a regular quad/triangle net (valence=>5) with
. P G T .
vertices P; 5,1 € [=1,1],7 = Jli 050 .7 € Z, . The points
(SP),; of the refined net can be classified into two distinct groups:

e The vertex points (SP) 5 (Fig. 5-(a)):
(SP) o2y = an P 1jen) + a1 + asPij) + a2l

+az5 P 5) + a2 P ;1) + a2r P j) + as Py oy (13)



e The edge-points (SP) g 95.1)(Fig. 5-(b))
(SP)(0,23+1) = az1 P50+ as2P )+ assPo g

+asaPj) + ass Py sy + ase Py gy + ast By (14)

Fig. 5 depicts the new stencils defined overs the smallest sup-
ports on the y-axis and near it. Due to the invariance under integer
shifts in the upwards direction, we only need to compute four new
stencils (two stencils near the y-axis and two stencils on the y-axis

(i=0)).

e

=

A

<
(a) < (c)
<

5

4 g *>4
(b) < (d) <§

Figure 5: The weight stencils in the quad/triangle boundary with
ordinary support. Control points marked by circles need to be joined
to the support such that equations (11),(12),(13) and (14)

Example

In this example, we show how to find the weight stencil a;; given
in equation (13).
We define a weight stencil wy; jy € I(Z°) at (0,0). To solve for
this single weight stencil, we fix a finite support
Q= {(_17 1)7 (_17 0)7 <_17 _1)7 (07 1)7 (07 0>7 (07 _1)7 (17 %)7 (17 _%)}
defined over the grid X (shown in Fig. 5-(a).), where wop) is
assumed to be zero outside of the support 2.
(13) & SPyp = anPo1g + ae P19+ a3 P11 + aabPy 1

Fag5 Foo 4 a6 Fo,—1 4 ao7 P 1+ asPy 1 = whj, (15)
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using equation (10), the solution of equation (15) is given by:

SQF(0.0) = 55 QF(0,0),¥f(r,y) = ') € Tl

= wQf ()0 = 55QF(0,0), (16)
we replace Q by Qf - { Q_f B é:f%:(fjcx " fyy) i § 8 )

and f by 1,z,y, 2y, 22, 3%

It is easy to show that the solution of equation (16) is given
by: Mo@yw(o,0 = dg,0)- Where Mg(q) denotes a C3,,|Q =6 x 8
matrix and d a C3,, = 6-column vector with entries

1 1 1 1 1 1]1 1
-1 -1 -1 0 0 0| 1 1
- 1 0 -1 1 0 -1 % -1
My =QEy) )= 5 2 2 _1 _1 _1| ] ¢
SO B LS SR N B Y
3 3 3 3 3 3 12 12
-1 0 1 0 o0 o] 3+ -1
1
0
di; = 277Q(2'y)(0,0) = 01 , and
12
0

w = (a21, 22, A23, G424, A25, A26, @27, fl28)

We can show that given this system of equations, there exists
an infinite number of solutions. For symmetry considerations, we
therefore suppose that a1 = Q923,029 = Q24 = 96, d27 = Q9283, then
the solution of the weight stencil given by equation (13)is given by:
w:(iiii§iii)

2247 1127 2247 1127 87 1127 567 56/

Using the same method for equations (11), (12) and (14), we

have a scheme with a small support, though probably not the small-

est possible, described by the rules shown in Fig. 6.

3.2 Boundaries

When we encounter boundary vertices, we need to use boundary
stencils that are usually different from the interior stencils. It is

11
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Figure 6: Templates of approximating/interpolatory schemes:(a)
the stencils on the y-axis, (b) the stencils near the y-axis.

important that subdivision at any point on the boundary be in-
dependent of any point in the interior of the mesh. This permits
two surfaces to be joined along a boundary curve. Therefore, cubic
B-spline subdivision stencils for curves can be used as the bound-
ary stencils of the Catmull-Clark subdivision scheme and the four
point subdivision stencils can be used as the boundary stencils of
Butterfly scheme.

In this section, we construct a non-uniform univariate scheme
which coincides with the cubic B-spline scheme on the left-half
plane, and the four point subdivision scheme on the right half-plane
and we gives the rules extending our subdivision scheme to meshes
with boundary. From theorem (1) we know that it is sufficient to
show that for some @ : II3(R) — [(Z),

SQ = Qo.

For a given set of control point (P) we define a set of new
control point (SP), over the support [—a, a],« € RT for 2 < 0 by
the cubic B-spline scheme, and for z > 0 by the four point scheme.
The quasi-interpolant operator @) over the support [—a, o is given
by:

ore = { My S5

Given this choice of @), the special subdivision rules on the origin
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point and near it, are defined by requiring the conditions (4), for
m = 3.

So the non-uniform univariate scheme over the support [—a, «|
is described by the rules shown in Fig.6.

T . 3
16 64 2
a) | i T i T + T f 1
0
3 123 189 1
296 296 296 296
b) | f f t f —e—rt t f f |
0
3 a1 N -3
32 7 2 6
o) | t f t f f f f |
0
3 1 3
s o+ 3
9 | % .
0
1 1
2 2
ot . . 1 : ‘ 1 1 .
0 1 L] 9 1

Figure 7: A non-uniform subdivision scheme combining the four
point scheme with the cubic B-spline scheme. (a, b, c) the creases
in the common boundary. (d, e) the stencils of B-spline cubic on
the left and the stencils of the four point in the right.

Note that the rules extending our subdivision scheme to meshes
with boundary are somewhat more complex, because the support
of our subdivision scheme and the butterfly scheme are larger
( for z > —1). A number of different cases have to be considered
separately. A complete set of rules for a mesh in the boundary is
given in Figures 7, 9.

4 Eigen Analysis of Subdivision

4.1 Necessary Conditions

Of crucial importance in the theory of subdivision surfaces is the
subdivision matrix S. The eigen structure of this matrix is im-

13



-1 ———i——«)——:e-—s
2 1 ?

- ___:._J)__?__;

_3 v
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Figure 9: The creases of our subdivision scheme in the boundary:
(a) the creases in the quad/triangle boundary, (b) the creases of
Butterfly.

portant in the analysis of the limit behavior of the surface at the
central vertex. Due to the property of affine invariance, the matrix
S always has a maximum eigenvalue )y equal to one. The next five
eigenvalues in order of magnitude:

/\0:1>)\12)\2>A32)\42)\5>|/\i|7i>5,
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are important in characterizing the behavior of the tangent
plane and the behavior of the curvature at the central vertex. In
particular, the two left eigenvectors corresponding to A; and A\, can
be used to compute the normal of the limit surface at the central
vertex. When the surface curvature is continuous, A3 = A

We define S to be the subdivision matrix for approximating
interpolatory scheme. For the subdivision scheme to be C? in the
functional sense, S must satisfy

where \; =1, %, %, }L, i, }l and Z; are the corresponding eigenvec-
tors producing the polynomials 1, z,y, zy, 22, y*>. The others eigen-

values \;,7 > 5 must be strictly smaller than i.

4.2 Sufficient Conditions

To analyze the smoothness of our subdivision scheme, we use the
joint spectral radius test described by Levin/Levin [5] and used
thereafter by Schaefer-Warren [8], Hakenberg [3] and Jiang et al [1]
to prove the sufficient conditions of C? continuity. This smooth-
ness test requires that the subdivision scheme is C? away from the
boundary edge and that the subdivision matrix for a point on the
boundary satisfies the necessary conditions from section 4.1. Fur-
thermore, the subdivision scheme along the edge must satisfy a joint
spectral radius condition. To perform the joint spectral radius test,
we require two subdivision matrices (A and B) that map an edge
M on the boundary to two smaller edges (M; and M,) after one
round of subdivision. The matrices A and B should contain all of
the vertices that influence the surface over the edges M; and M.
For that we define the set L which is the set of |L| = 45 points
(show in Fig. 7.) such that:

L={(i,j):i=-1,-2,-4<j<4,j€ZyU{(i,j+31):0<
1<2,-4<j<4,jez}

The set L denote a subset of mesh points around the origin. Let
A denote the subdivision matrix with values from L to L after one
subdivision iteration, and let B denote the subdivision matrix with
values from L to {L, where ¢ is a shift operator, EL = {(i,j + 1) \
(1,7) € L}. Next, we find a diagonalizing matrix V' such that

15



A C
-1 _ 0
voav= (g )

19)
0 C (
—1 o 1
V-'BV = ( 0 Y )
where A = diag(1, %, %, }l, %, 411> and © is an upper-triangular

matrix with the same diagonal entries as A. The upper-triangular
matrix for our schergle is:

1 4 1T 1
25 100 50 20 20

o 1 o L v _ 1

2 100 100 100

oo i -4 4 _ 15

e = 2 125 25 100
o0 0 5 0 0

o0 0 0 1 0

o0 0 o0 0 1

The obvious choice for constructing the matrix V' is to simply
use all of the eigenvectors of A. However, this approach can be nu-
merically unstable if the matrix has small eigenvalues. The matrix
V' is formed from the right eigenvectors associated with the eigen-
values from A and a basis of the null space of the corresponding
left eigenvectors.

Finally, we use Yy and Y; to compute

pM(Yy, Y1) = (Maz||Y,, Y., ,...Ye |loo)® where ¢ € {0,1}.

From [5], if there exists k such that pl¥ < i, then the quad/triangle
subdivision scheme is C? at the boundary. Applying the joint spec-
tral radius technique to our quad/triangle subdivision scheme, we
find pl'" = % < }L and our quad/triangle subdivision scheme
satisfies the necessary conditions for polynomial generation, so we
conclude that our approximating/interpolatory quad/triangle sub-
division scheme is C? at quad/triangle boundaries.

5 Implementation and Results

Our subdivision scheme is stationary and easy to implement as
every classical scheme. We use a large number of stencils at the
boundary but their support is compact. In areas where the mesh is
quadrilateral and for x < 0, we apply the Catmull-Clark algorithm.
In areas where the mesh is triangular and for z > 0, we apply
the butterfly algorithm. For —1 < x < 2, along the quad/triangle
boundary where vertices in the y — axis are shared by two adjacent

16



quads and three adjacent triangles we apply our stencils given in
Fig. 5. In the boundary for the creases we apply the stencils given
in Figures 6, 8.

N
NN
QSRR
1% CSRIRIRY

Figure 10: Comparison of the Butterfly scheme (top), Catmull-
Clark scheme (middle) and our new scheme (bottom). From left to
right: the control meshes, the limit surfaces, colored meshes (yellow
for triangles, blue for quads), and reflexion lines.

Figure 9 demonstrates that our new scheme performs as well as
the Catmull-Clark and Butterfly schemes on a pic-like polygonal
model.

Figure 10 depicts different surfaces created using our subdivision
scheme. Note that the right-most pictures show a reflection-line
plot of the surface, which provides an excellent quality of the sur-
face generated by our subdivision scheme along the quad/triangle
boundary.
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6 Conclusion

In this paper we have proposed a new quad/triangle subdivision
scheme which unifies the Catmull-Clark and the Butterfly subdivi-
sion algorithms along the quad/triangle boundary. On the bound-
ary vertices are shared by two adjacent quads and three adjacent
triangles. We have proven that our scheme is C? everywhere except
for the ordinary Butterfly where our scheme is C*. Our method is
based on the theory of polynomial generation. In areas where the
mesh is regular, the subdivision operator S generates polynomials
of degree up to m, and the equation of limit surface is known, thus
the continuity can deduced. On the contrary in areas where the
mesh is irregular ; we can not find the exact equation generated by
S°>°. We must therefore propose rules which optimize the behavior
of the curvature at the boundary in the irregular case. In the fu-
ture we intend to find a general mask (any valence) and to give a
formal proof of continuity. This could be performed by introducing
a general mask followed by a correction mask or by a novel method
based on properties of polynomial generation near a singular point.
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