L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Mathematics, vol.108, issue.1-3, pp.231-252, 1992.
DOI : 10.1016/0012-365X(92)90678-9

R. J. Faudree, R. H. Schelp, A. Gyárfás, and Z. Tuza, The strong chromatic index of graphs, Twelfth British Combinatorial Conference, pp.205-211, 1989.

P. Gvozdjak, P. Horák, M. Meszka, and Z. Skupie´nskupie´n, Strong chromatic index for multigraphs, Util. Math, vol.57, pp.21-32, 2000.

J. Janssen and L. Narayanan, Approximation algorithms for channel assignment with constraints, Theoretical Computer Science, vol.262, issue.1-2, pp.649-667, 2001.
DOI : 10.1016/S0304-3975(00)00388-1

M. Mahdian, The strong chromatic index of C 4 -free graphs Random Structures and Algorithms, Proceedings of the Ninth International Conference, pp.3-4, 1999.

M. Mahdian, On the computational complexity of strong edge coloring, Discrete Applied Mathematics, vol.118, issue.3, pp.239-248, 2002.
DOI : 10.1016/S0166-218X(01)00237-2

M. Molloy and B. Reed, A Bound on the Strong Chromatic Index of a Graph, Journal of Combinatorial Theory, Series B, vol.69, issue.2, pp.103-109, 1997.
DOI : 10.1006/jctb.1997.1724

J. J. Quinn and A. T. Benjamin, Strong chromatic index of subset graphs, Journal of Graph Theory, vol.24, issue.3, pp.267-273, 1997.
DOI : 10.1002/(SICI)1097-0118(199703)23:3<267::AID-JGT8>3.0.CO;2-N

J. J. Quinn and E. L. Sundberg, Strong chromatic index in subset graphs, Ars Combin, vol.49, pp.155-159, 1998.

H. Tamura, K. Watanabe, M. Sengoku, and S. Shinoda, Graph theoretical considerations of a channel assignment problem on multihop wireless networks, Proceedings of ITC-CSCC conference, 2002.