G. Morton, D. Cummings, D. Baskin, G. Barsh, and M. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.52, issue.7109, pp.289-295, 2006.
DOI : 10.1016/j.physbeh.2004.04.034

C. Vianna and R. Coppari, A Treasure Trove of Hypothalamic Neurocircuitries Governing Body Weight Homeostasis, Endocrinology, vol.152, issue.1, pp.11-18, 2011.
DOI : 10.1210/en.2010-0778

H. Zheng and H. Berthoud, Neural Systems Controlling the Drive to Eat: Mind Versus Metabolism, Physiology, vol.23, issue.2, pp.75-83, 2008.
DOI : 10.1152/physiol.00047.2007

M. Dietrich and T. Horvath, Feeding signals and brain circuitry, European Journal of Neuroscience, vol.144, issue.Suppl 1, pp.1688-1696, 2009.
DOI : 10.1111/j.1460-9568.2009.06963.x

R. Cone, Anatomy and regulation of the central melanocortin system, Nature Neuroscience, vol.274, issue.5, pp.571-578, 2005.
DOI : 10.1038/sj.ijir.3901200

S. Bouret, J. Gorski, C. Patterson, S. Chen, and B. Levin, Hypothalamic Neural Projections Are Permanently Disrupted in Diet-Induced Obese Rats, Cell Metabolism, vol.7, issue.2, pp.179-185, 2008.
DOI : 10.1016/j.cmet.2007.12.001

S. Pinto, A. Roseberry, H. Liu, S. Diano, and M. Shanabrough, Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin, Science, vol.304, issue.5667, pp.110-115, 2004.
DOI : 10.1126/science.1089459

S. Bouret, S. Draper, and R. Simerly, Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding, Science, vol.304, issue.5667, pp.63-64, 2004.
DOI : 10.1126/science.1095004

Z. Andrews, Z. Liu, N. Walllingford, D. Erion, and E. Borok, UCP2 mediates ghrelin???s action on NPY/AgRP neurons by lowering free radicals, Nature, vol.13, issue.7206, pp.846-851, 2008.
DOI : 10.1038/nature07181

A. ´. Fontán-lozano, L. ´pez-lluch, G. Delgado-garcía, J. Navas, P. Carrión et al., Molecular Bases of Caloric Restriction Regulation of Neuronal Synaptic Plasticity, Molecular Neurobiology, vol.21, issue.4, pp.167-177, 2008.
DOI : 10.1007/s12035-008-8040-1

T. Horvath, S. Diano, and M. Tschöp, Brain Circuits Regulating Energy Homeostasis, The Neuroscientist, vol.9, issue.3, pp.235-246, 2004.
DOI : 10.1177/1073858403262151

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605273/pdf

S. Pag and M. , Inhibition of phosphatases and sulfatases by transition-state analogues, Biochemistry, vol.27, pp.206-212, 1988.

A. Kletzin, Tungsten in biological systems, FEMS Microbiology Reviews, vol.18, issue.1, pp.5-63, 1996.
DOI : 10.1111/j.1574-6976.1996.tb00226.x

I. Canals, M. Carmona, M. Amigo-correig, A. Barbera, and A. Bortolozzi, A Functional Leptin System Is Essential for Sodium Tungstate Antiobesity Action, Endocrinology, vol.150, issue.2, p.642, 2008.
DOI : 10.1210/en.2008-0881

M. Claret, H. Corominola, I. Canals, J. Saura, and S. Barcelo-batllori, Tungstate Decreases Weight Gain and Adiposity in Obese Rats through Increased Thermogenesis and Lipid Oxidation, Endocrinology, vol.146, issue.10, pp.4362-4369, 2005.
DOI : 10.1210/en.2005-0385

M. Amigó-correig, S. Barceló-batllori, S. Piquer, M. Soty, and G. Pujadas, Sodium tungstate regulates food intake and body weight through activation of the hypothalamic leptin pathway, Diabetes, Obesity and Metabolism, vol.296, issue.Suppl. 1, pp.235-242, 2011.
DOI : 10.1111/j.1463-1326.2010.01339.x

A. Gómez-ramos and J. Avila, Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation, Journal of Neuroscience Research, vol.461, issue.2, pp.264-273, 2006.
DOI : 10.1002/jnr.20726

P. Enriori, A. Evans, and M. Cowley, Diet-Induced Obesity Causes Severe but Reversible Leptin Resistance in Arcuate Melanocortin Neurons, Cell Metabolism, vol.5, issue.3, pp.181-194, 2007.
DOI : 10.1016/j.cmet.2007.02.004

S. Barcelo-batllori, S. Kalko, Y. Esteban, S. Moreno, and M. Carmona, Integration of DIGE and Bioinformatics Analyses Reveals a Role of the Antiobesity Agent Tungstate in Redox and Energy Homeostasis Pathways in Brown Adipose Tissue, Molecular & Cellular Proteomics, vol.7, issue.2, pp.378-393, 2008.
DOI : 10.1074/mcp.M700198-MCP200

A. Shevchenko, M. Wilm, O. Vorm, and M. M. , Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels, Analytical Chemistry, vol.68, issue.5, pp.850-858, 1996.
DOI : 10.1021/ac950914h

S. Barcelo-batllori, H. Corominola, M. Claret, I. Canals, and J. Guinovart, Target identification of the novel antiobesity agent tungstate in adipose tissue from obese rats, PROTEOMICS, vol.7, issue.18, pp.4927-4935, 2005.
DOI : 10.1002/pmic.200500050

S. Barceló-batllori, M. André, C. Servis, N. Lévy, and O. Takikawa, Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: Implications for inflammatory bowel diseases, PROTEOMICS, vol.103, issue.5, pp.551-560, 2002.
DOI : 10.1002/1615-9861(200205)2:5<551::AID-PROT551>3.0.CO;2-O

E. Felley-bosco, I. Demalte, S. Barcelo, J. Sanchez, and D. Hochstrasser, Information transfer between large and small two-dimensional polyacrylamide gel electrophoresis, Electrophoresis, vol.20, issue.18, pp.3508-3513, 1999.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3508::AID-ELPS3508>3.0.CO;2-7

C. Taylor and R. Laevenson, Quantification of immunohistochemistry?issues concerning methods, utility and semiquantitative assessment II, Histopathology, vol.9, issue.4, pp.411-424, 2006.
DOI : 10.1097/00129039-200609000-00001

M. Lazar, J. Lee, and A. A. , Axial asymmetry of water diffusion in brain white matter, Magnetic Resonance in Medicine, vol.15, issue.4, pp.860-867, 2005.
DOI : 10.1002/mrm.20653

K. Hasan and P. Narayana, Retrospective measurement of the diffusion tensor eigenvalues from diffusion anisotropy and mean diffusivity in DTI, Magnetic Resonance in Medicine, vol.19, issue.1, pp.130-137, 2006.
DOI : 10.1002/mrm.20935

M. Munoz, A. Barbera, J. Dominguez, J. Fernandez-alvarez, and R. Gomis, Effects of Tungstate, a New Potential Oral Antidiabetic Agent, in Zucker Diabetic Fatty Rats, Diabetes, vol.50, issue.1, pp.131-138, 2001.
DOI : 10.2337/diabetes.50.1.131

M. Amigó-correig, S. Barceló-batllori, S. Piquer, M. Soty, and G. Pujadas, Sodium tungstate regulates food intake and body weight through activation of the hypothalamic leptin pathway. Diabetes, Obesity and Metabolism In press

Y. Fukata, T. Itoh, T. Kimura, C. Menager, and T. Nishimura, CRMP-2 binds to tubulin heterodimers to promote microtubule assembly, Nature Cell Biology, vol.4, pp.583-591, 2002.
DOI : 10.1038/ncb825

T. Yoshimura, N. Arimura, Y. Kawano, S. Kawabata, and S. Wang, Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3??/CRMP-2 pathway, Biochemical and Biophysical Research Communications, vol.340, issue.1, pp.62-68, 2006.
DOI : 10.1016/j.bbrc.2005.11.147

T. Yoshimura, Y. Kawano, N. Arimura, S. Kawabata, and A. Kikuchi, GSK-3?? Regulates Phosphorylation of CRMP-2 and Neuronal Polarity, Cell, vol.120, issue.1, pp.137-149, 2005.
DOI : 10.1016/j.cell.2004.11.012

N. Arimura, C. Menager, Y. Kawano, T. Yoshimura, and S. Kawabata, Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones, Molecular and Cellular Biology, vol.25, issue.22, 2005.
DOI : 10.1128/MCB.25.22.9973-9984.2005

G. Alberto, J. D. Delia, Z. Helena, C. Ramon, and G. , Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation, Journal of Neuroscience Research, vol.83, pp.264-273, 2006.

M. Carmona, M. Amigo, S. Barcelo-batllori, J. M. Esteban, and Y. , Dual effects of sodium tungstate on adipocyte biology: inhibition of adipogenesis and stimulation of cellular oxygen consumption, International Journal of Obesity, vol.282, issue.5, 2009.
DOI : 10.1016/S0014-5793(97)01145-9

S. Piquer, S. Barcelo-batllori, and J. M. , Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells, Biochemical and Biophysical Research Communications, vol.358, issue.2, pp.385-391, 2007.
DOI : 10.1016/j.bbrc.2007.04.143

A. Brown, T. Slaughter, and M. Black, Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons, The Journal of Cell Biology, vol.119, issue.4, pp.867-882, 1992.
DOI : 10.1083/jcb.119.4.867

C. Becskei, T. Lutz, and T. Riediger, Blunted Fasting-Induced Hypothalamic Activation and Refeeding Hyperphagia in Late-Onset Obesity, Neuroendocrinology, vol.90, issue.4, pp.371-382, 2009.
DOI : 10.1159/000251723

C. Pierpaoli and P. Basser, Toward a quantitative assessment of diffusion anisotropy, Magnetic Resonance in Medicine, vol.222, issue.6, pp.893-906, 1996.
DOI : 10.1002/mrm.1910360612

P. Basser and C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI, Journal of Magnetic Resonance, vol.213, issue.2, pp.209-219, 1996.
DOI : 10.1016/j.jmr.2011.09.022

C. Beaulieu, The basis of anisotropic water diffusion in the nervous system - a technical review, NMR in Biomedicine, vol.8, issue.7-8, pp.435-455, 2002.
DOI : 10.1002/nbm.782

S. Banas, C. Rouch, and N. Kassis, A Dietary Fat Excess Alters Metabolic and Neuroendocrine Responses Before the Onset of Metabolic Diseases, Cellular and Molecular Neurobiology, vol.279, issue.2, pp.157-168, 2009.
DOI : 10.1007/s10571-008-9307-9

H. Ono, A. Pocai, Y. Wang, H. Sakoda, and T. Asano, Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats, Journal of Clinical Investigation, vol.118, pp.2959-2968, 2008.
DOI : 10.1172/JCI34277DS1

A. Barbera, J. Rodriguez-gil, and J. Guinovart, Insulin-like actions of tungstate in diabetic rats. Normalization of hepatic glucose metabolism, J Biol Chem, vol.269, pp.20047-20053, 1994.

A. Barbera, N. Prats, J. Rodriguez-gil, M. Domingo, and R. Gomis, Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rats: a long-term study, Diabetologia, vol.44, issue.4, 2001.
DOI : 10.1007/s001250100479

A. Craig and G. Banker, Neuronal Polarity, Annual Review of Neuroscience, vol.17, issue.1, pp.267-310, 1994.
DOI : 10.1146/annurev.ne.17.030194.001411

G. Veeranna and K. Shetty, Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain, Molecular Brain Research, vol.76, issue.2, pp.229-236, 2000.
DOI : 10.1016/S0169-328X(00)00003-6

J. Evans, C. Sumners, J. Moore, M. Huentelman, and J. Deng, Characterization of Mitotic Neurons Derived From Adult Rat Hypothalamus and Brain Stem, J Neurophysiol, vol.87, pp.1076-1085, 2002.

R. Sihag and M. Inagaki, Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments, Experimental Cell Research, vol.313, issue.10, pp.2098-2109, 2007.
DOI : 10.1016/j.yexcr.2007.04.010

K. Todd, A. Serrano, J. Lacaille, and R. Robitaille, Glial cells in synaptic plasticity, Journal of Physiology-Paris, vol.99, issue.2-3, pp.75-83, 2006.
DOI : 10.1016/j.jphysparis.2005.12.002

A. Bernabeu, A. Alfaro, M. García, and E. Fernández, Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects, NeuroImage, vol.47, issue.4, pp.1172-1176, 2009.
DOI : 10.1016/j.neuroimage.2009.04.080

N. Inagaki, K. Chihara, N. Arimura, C. Menager, and Y. Kawano, CRMP- 2 induces axons in cultured hippocampal neurons, Nature Neuroscience, vol.4, issue.8, pp.781-782, 2001.
DOI : 10.1038/90476

N. Yamashita, T. Ohshima, F. Nakamura, P. Kolattukudy, and J. Honnorat, Phosphorylation of CRMP2 (Collapsin Response Mediator Protein 2) Is Involved in Proper Dendritic Field Organization, Journal of Neuroscience, vol.32, issue.4, pp.1360-1365, 2012.
DOI : 10.1523/JNEUROSCI.5563-11.2012

E. Charrier, S. Reibel, V. Rogemond, M. Aguera, and N. Thomasset, Collapsin Response Mediator Proteins (CRMPs): Involvement in Nervous System Development and Adult Neurodegenerative Disorders, Molecular Neurobiology, vol.28, issue.1, pp.51-63, 2003.
DOI : 10.1385/MN:28:1:51

Y. Gu, N. Hamajima, and Y. Ihara, Neurofibrillary Tangle-Associated Collapsin Response Mediator Protein-2 (CRMP-2) Is Highly Phosphorylated on Thr-509, Ser-518, and Ser-522, Biochemistry, vol.39, issue.15, pp.4267-4275, 2000.
DOI : 10.1021/bi992323h

K. Kanninen, G. Goldsteins, S. Auriola, I. Alafuzoff, and J. Koistinaho, Glycosylation changes in Alzheimer???s disease as revealed by a proteomic approach, Neuroscience Letters, vol.367, issue.2, pp.235-240, 2004.
DOI : 10.1016/j.neulet.2004.06.013

A. Verty, A. Allen, and B. Oldfield, The Endogenous Actions of Hypothalamic Peptides on Brown Adipose Tissue Thermogenesis in the Rat, Endocrinology, vol.151, issue.9, pp.4236-4246, 2010.
DOI : 10.1210/en.2009-1235

S. Mungarndee, R. Lundy, and R. Norgren, Expression of Fos during sham sucrose intake in rats with central gustatory lesions, AJP: Regulatory, Integrative and Comparative Physiology, vol.295, issue.3, pp.751-763, 2008.
DOI : 10.1152/ajpregu.90344.2008

R. Marouga, . Ds, and E. Hawkins, The development of the DIGE system: 2D fluorescence difference gel analysis technology, Analytical and Bioanalytical Chemistry, vol.21, issue.3, pp.669-678, 2005.
DOI : 10.1007/s00216-005-3126-3

J. Tobin, M. Xie, T. Le, S. Song, and R. Armstrong, -Null Mice: Differential Detection With Diffusion Tensor Imaging, Journal of Neuropathology & Experimental Neurology, vol.70, issue.2, pp.157-165, 2011.
DOI : 10.1097/NEN.0b013e31820937e4

URL : https://hal.archives-ouvertes.fr/hal-00109478

S. Morisaki, Y. Kawai, M. Umeda, M. Nishi, and R. Oda, In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging, Journal of Magnetic Resonance Imaging, vol.12, issue.Suppl 4, pp.535-542, 2011.
DOI : 10.1002/jmri.22442

R. Harris, T. Kasser, and R. Martin, Dynamics of Recovery of Body Composition After Overfeeding, Food Restriction or Starvation of Mature Female Rats, J Nutr, vol.116, pp.2536-2546, 1986.

S. Bouret, S. Draper, and R. Simerly, Formation of Projection Pathways from the Arcuate Nucleus of the Hypothalamus to Hypothalamic Regions Implicated in the Neural Control of Feeding Behavior in Mice, Journal of Neuroscience, vol.24, issue.11, pp.2797-2805, 2004.
DOI : 10.1523/JNEUROSCI.5369-03.2004