Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems

Abstract : Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00736577
Contributeur : Yohan Fougerolle <>
Soumis le : vendredi 28 septembre 2012 - 18:03:07
Dernière modification le : jeudi 11 juillet 2019 - 14:10:06
Document(s) archivé(s) le : samedi 29 décembre 2012 - 06:40:30

Fichier

journal.pone.0029324.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Johan Gielis, Diego Caratelli, Yohan Fougerolle, Paolo Emilio Ricci, Ilia Tavkelidze, et al.. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems. PLoS ONE, Public Library of Science, 2012, 7 (9), pp.e29324. ⟨10.1371/journal.pone.0029324⟩. ⟨hal-00736577⟩

Partager

Métriques

Consultations de la notice

571

Téléchargements de fichiers

279