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Saliency for Spectral Image Analysis

Steven Le Moan, Alamin Mansouri, Jon Y. Hardeberg and Yvon Voisin

Abstract—We introduce a new feature extraction model for
purposes of image comparison, visualization and interpretation.
We define the notion of spectral saliency, as the extent to which
a certain group of pixels stands out in an image and in terms
of reflectance, rather than in terms of colorimetric attributes
as it is the case in traditional saliency studies. The model
takes as an input a multi- or hyper-spectral image with any
dimensionality, any range of wavelengths, and it uses a series of
dedicated feature extractions to output a single saliency map. We
also present a local analysis of the image spectrum allowing to
produce such maps in color, thus depicting not only which objects
are salients, but also in which range of wavelengths. A variety of
applications can be derived from the resulting maps, particularly
under the scope of visualization, such as the saliency-driven
evaluation of dimensionality reduction techniques. Results show
that spectral saliency provides valuable information, which do
not correlate neither with visual saliency, second-order statistics
nor with naturalness, but serve however well for visualization-
related applications.

Index Terms—Multi/hyperspectral Visualization,

Saliency

imagery,

I. INTRODUCTION

When it comes to computer science, the notion of saliency
is closely related to visual attention in color images: “from a
given scene, which objects/features first draw attention and
why ?”. Following early influential work by Treisman et
al. [1], Itti et al. [2] proposed a general visual attention
model to design so-called saliency maps, in order to predict
human gaze, given a certain digital picture. This model is
based on the extraction of three different features: lightness,
chroma (Red/Green and Blue/Yellow oppositions) and orien-
tation (by means of Gabor filters in four different directions).
Each feature is then derived into a Gaussian pyramid of so-
called feature maps, where a pixel at a coarse scale thus
represents the surrounding of the corresponding location in
a finer scale. Through a series of dedicated combinations,
blurring and normalizations, the model eventually outputs a
single greyscale saliency map, where bright pixels represent
the most salient locations. More recently, Harel et al. [3]
proposed to model the feature spaces as Markov chains to
achieve a better normalization of the feature maps through a
so-called “activation”. In [4], the authors suggested a method
using the log-spectrum of the input image in which statistical
singularities are assumed to be salient features (or so-called
proto objects). An information-theoretic approach based on
an extraction of independent components of the scene was
proposed in [5]. As opposed to these techniques that seek
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biological plausibility to relate as much as possible to human
vision, some methods use high-level features such as face
recognition [6]. In [7], the authors proposed a supervised
approach trained by a large database of eye-tracking data in
a model based on low, mid and high-level image features.
More recently, a signature-based approach was introduced by
Hou et al. [8]. A very interesting review by Frintrop et al.
[9] addresses thoroughly the cognitive foundations of many
saliency detection techniques from the literature.

Yet, we would like to consider saliency as a much broader
concept that goes beyond the simple scope of visual attention.
Knowing the extent to which a certain object stands out in a
certain image, w.r.t. a certain feature (such as pixel lightness),
provides indeed with valuable information, which can be used
for instance for image matching [10], segmentation [11] or
artifact detection [12]. Saliency is thus not tied up to the
notion of vision, and it can be seen as a way to measure
informative content. Consequently, any kind of data can be
considered, although only a few studies went outside the scope
of two-dimensional trichromatic images. Among them, and
though not directly related to this study, it is worth mentioning
the pioneer work by Lee et al. [13] on 3D mesh saliency.
As for high-dimensional images such as remotely sensed
hyperspectral images, they have received very little attention
when it comes to saliency. Particularly, there exists no
model to detect salient objects in terms of spectral attributes,
although the latter have evidently a variety of advantages over
trichromacy: able to detect metameric matches, not bounded
to visible wavelengths and device-independent. A strategy
of that kind would moreover allow to compare images with
different number of channels, a useful property to evaluate
dimensionality reduction techniques for example.

In this paper, we introduce such a model for purposes of
image comparison, visualization and interpretation. We define
the notion of spectral saliency, as the extent to which a
certain group of pixels stands out in an image, in terms of
reflectance rather than in terms of colorimetric attributes. The
model takes as an input a multi- or hyper-spectral image with
any dimensionality, any range of wavelengths and it uses a
series of dedicated feature extractions to output a single map,
which can be further used for various applications. Note
that we also present a local analysis of the image spectrum
allowing to produce saliency maps in color, thus depicting not
only which objects are salients, but also in which range of
wavelengths. This is particularly useful for a fast and efficient
scene interpretation.

The remainder of this document is organized as follows:
first, we present the details of the architecture of the spectral
saliency (SS) model before discussing a variety of results in
Section IIT and eventually drawing our conclusions.



II. SPECTRAL SALIENCY

A. Overall architecture

The SS model, whose general architecture is depicted in
Figure 1, is based on the comparison of each pixel with its
surroundings, in terms of different features and at several
scales. The next sections give details on each steps of the
model.
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Figure 1. The SS model.

1) Measures, features and center-surround comparisons:
The key idea of saliency detection is the center-surround
comparison, that is, a pixel or group of pixels is salient if it is
somehow different from its neighborhood [14]. Thus, in order
to achieve this detection, one needs to define these “centers”
and “surrounds” in the spatial dimensions of the image, but
also an efficient means to compare them. The model that we
propose is inspired by the well-known Itti model [2], in which
centers and surrounds are defined within an 8-level Gaussian
pyramid. Let us consider for instance a three-dimensional
representation of the image such as its first three principal
components, that we will denote PCq 5 3. Then let us derive
a Gaussian pyramid representation of PC; 5 3 by iteratively
blurring and sub-sampling it so that each level of the pyramid
depicts PC; 23 at a different spatial scale, ranging from
number 1 (full resolution), to number 8 (lowest resolution).
As suggested in [2], centers are then considered at scales
¢ € {2, 3,4} and surrounds at scales s = c+0d, with ¢ € {3,4}.
Thus, we obtain the straightforward correspondence of a pixel

at a fine scale (center) and the corresponding location at a
coarser scale (surround), as described by Figure 2.
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Figure 2. Description of the center-surround comparison for Dpc, , ,, the
Euclidean distance in the space spanned by the first three principal components
of the image.

Now that we have defined these centers and surrounds,
we need to find an efficient way to compare them. There
exist many different approaches to compare high-dimensional
pixels [15] that we can classify in two categories: the
perception-oriented measures such as the CIE color difference
metrics and the spectral measures such as the Euclidean
distance between high-dimensional vectors. Measures in the
first category usually to define particular viewing conditions
(illuminant, standard observer) whereas spectral measures on
the other hand, allow to compare full reflectance spectra in
an unconstrained fashion. In this paper, we consider both
perceptual and purely physical properties of the scene to detect
salient objects. Consequently, we propose to use a set of 4
common spectra comparison measures for the SS model. In
the following equations, the pair of pixels to compare are noted
f1 and fg.

e Dy, the Euclidean distance (L2-norm) between pixels,

defined as high-dimensional vectors.

Dyyy(f13£2) = \/Z (f1(A) — ()2 (D)

where f;(),,) is the value of f; in the band corresponding
to wavelength A\, (idem for f;). Although, using the
full high-dimensional image for the multiscale analysis
is very demanding computationally-wise, therefore we
propose to use the same measure, but within the space
spanned by the image’s first three principal components.

3

> ((PC,) — £2(PC))* ()

n=1

DPC1,2,3 (f17 f2) =

Based on results obtained over a population of 800
pixels randomly chosen from the 8-image Foster’s 2002
database [16], we noted a correlation of 0.99 between D¢
and Dpc, , ,, which leads us to choose the latter measure
instead of the former.

o AFE,, the Euclidean distance between pixels as CIELAB
trichromatic values. The conversion from reflectance to



tristimuli values was made w.r.t. the CIED65 illuminant
(daylight) as well as the CIE 10° standard observer
data, or so-called Color Matching Functions [17]. These
are indeed the standard assumptions when it comes to
viewing conditions in the litterature. Tri-stimuli in XYZ
were then converted to the perceptually pseudo-uniform
CIELAB color space [18]. This feature includes both
lightness and chromatic information.

ABu(Fiif) = \/(Li — 13)2 + (af — a3)? + (b — b3)?
3)
where (L7,af,by) and (L3, ab,b3) are respectively the
coordinates of f; and f5 in CIELAB.
e 0O,y the angle between pixels.

f; - £

Bref(£1; £2) = cos™! () 4)
i o) T T

where - is the dot product between two vectors. Note that
this feature is independent of pixel lightness.

e Dy, the difference between pixels in the Gabor-filtered
image of the first principal component of the spectral
image. Linear filter for edge detection according to a
specified direction. Allows to compare pixels in terms of
local orientations (at 0, 45, 90 and 135°, see [2]). Note
that we make the assumption that noisy channels have
been previously removed in order to minimize the noise
in the first principal component.

These measures use features of various dimensionalities
(reflectance curves, principal components and Gabor-filtered
pixels) and which are in turn compared using the Euclidean
distance or angle. Note that the dimensionality of each scale
of the pyramids is the dimensionality of the corresponding
feature. For example, for Dpc, , ,, centers and surrounds are
both 3-dimensional. The Euclidean distance and angle are then
used to evaluate the discrepancies between these centers and
surrounds, pixel by pixel, which results in intermediate maps
(so-called conspicuity maps in the Itti model). Note that other
measures like correlation, higher order statistics or information
measures such as mutual information [19] are too demanding
computationally-wise to be considered in this model.

2) Normalization: The intermediate maps are eventually
fused (averaged, so as to treat the model’s features equally)
into a single saliency map, containing raw saliency information
and which needs a specific normalization. The role of normal-
ization is to concentrate lightness into a fewer key locations
in order to increase the maps’ interpretability [3]. We propose
to do so by raising the maps to a power of 7, after scaling
to the range [0..1]. In this study, we set this parameter to
7 = 1.2, in order to obtain the most representative results on
the images used. Depending on the amount of information
to be retained from the scene, we recommend to decrease this
value in order to increase the number of detected salient pixels.
Figure 3 shows an example of resulting map, before and after
activation.

The final map is in turn normalized, but not blurred neither
centrally biased, as it is traditionally done in visual saliency
models. Indeed, the purpose of these processings pertains to
visual attention modeling, which is not taken into account here.

Figure 3. Example of normalization of an intermediate saliency map obtained
from the Jasper Ridge scene (7 = 1.3). Left: raw ; right: normalized. The
brightness of a pixel represents its saliency (white pixel: very salient).

This final map will then be referred to as Mgg. Figure 4 shows
an example of intermediate and final maps.

®

Figure 4. Example of final and intermediate saliency maps from the SS
model. (a) true color composite, (b) final saliency map, (c) normalized
Dpc, , ; map, (d) normalized AFE,, map, (¢) normalized 6, map, (f)
normalized Dg,, map. We observe that all four intermediate maps emphasize
slightly different regions, and especially the one corresponding to the angle
feature (e), which is the only one detecting the middle road as well as the
tower at the bottom right side of the scene (circle shape). The AE,, map
(d) detects especially the yellow painted sign on the road (bottom, middle),
whereas all four features agree on the fact that the most salient area is the
group of trees at the top of the image, next to the garage roof, which is very
reflective all over the spectrum.

The output of the SS model thus represents those pixels
whose reflectances stand out, in terms of the presented fea-
tures.

3) Low-dimensional images: This model can be applied
regardless of the dimensionality of the image. However for
low-dimensional images (less than 4 channels), it is relevant
to consider some modifications. For trichromatic images
for instances, there is very little advantage in using Dpc, , ,
instead of D,s. Greyscale images require only D, (which



becomes a simple difference) and D,,, for 1-dimensional
images.

B. In color

In order to further explore this concept of spectral saliency,
we propose to enhance the SS model so as to create saliency
maps in color. We believe indeed that it is possible to display
not only which pixels stand out, but also where they stand out,
that is in which particular range of wavelengths. We propose
to pre-define up to three ranges of interest by segmenting
the image’s spectrum in as many parts. The SS model is
then applied locally, that is considering only the channels
in each part. Three maps are thus obtained, which contain
saliency information corresponding to each range of interest.
Eventually, these maps are gathered by means of a convenient
mapping to the Red-Green-Blue color space. Consequently,
the regions which are salient for example in the second range
of interest will appear green on the final map, therefore
allowing for an easy and straightforward interpretation. We
will refer to the resulting maps as Mgg. Figure 5 illustrates
this enhanced model, which will be referred to as SS-Color
(SS-C), and Figure 6 gives an example of result, considering
three equally-sized ranges of interest.
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Figure 5. The SS-C model.

III. EXPERIMENTS

A. Data

In this study, we used 2 hyperspectral images of remotely
sensed natural scenes:

First component Second component

Third component Mapping to RGB: Mg

Figure 6. Example of enhanced saliency map obtained from a 160-band
hyperspectral image, ranging from 400 to 1000nm. A uniform spectral
partitioning was used, that is roughly: 400-600nm (first component, mapped
to the Blue channel), 601-800nm (second component, mapped to the Green
channel), 801-1000nm (third component, mapped to the Red channel). The
variety of colors shows the sensitivity of the SS model to the range of
wavelengths.

o The top part of the “Jasper Ridge” scene from the AVIRIS
sensor!. It contains 224 channels ranging from 400 to
2500nm (sampling rate: 9.3nm).

o The ”Norway” scene from the HySpex sensor’. It
contains 160 channels ranging from 400 to 1000nm
(sampling rate: 3.7nm).

Both images contain reflectance data, stored as double preci-
sion values (64 bits), and pre-processed as follows. For white
point detection and coarse noise removal, all pixels with value
greater than mr+40r (where mp and o are respectively the
average and standard deviation) of the whole raw image, were
clipped to this boundary. Each image was then scaled so as to
have a maximal value of 1, corresponding to a non-specular
white. Moreover, bands with average reflectance values below
2% and those with low correlation (below 0.8) with their
neighboring bands were removed, as suggested in [20].

B. Maps

In this section, we present the resulting maps obtained on
the spectral images and we discuss the similarity of the SS with
the Signature-based Visual Saliency model (SVS) presented in
[8], which was applied on the true color composite (projection
of the visible-ranged channels to a set of Color Matching Func-
tions, as in [21]). Figures 7 and 9 show the results obtained on
the two remotely sensed hyperspectral images. Note that, in
this study, we considered only two partitioning approaches for
the HDS-C model: uniform (three three equally-sized parts)
and visible/near InfraRed (nIR). In the latter case, only two
components of the RGB space were used: Red (for the nIR
range) and Blue (for the visible range).

Overall, the SS and SVS models extract very different
objects, mostly due to the fact that the latter is based on

Uhttp://aviris.jpl.nasa.gov/html/aviris.freedata.html
Zhttp://www.neo.no/hyspex/



Figure 7.

visual attention and perceptual attributes only, which is not
the case of our method. Note also that the SVS method uses
a final blur, which induces a more “diffuse” and less precise
rendering. On the ”Jasper Ridge” scene, the SVS model fails
to detect the river in the middle of the scene, due to its lack of
conspicuity in the true color composite. It is however retained
by our model, and particularly salient in the nIR (red in the
visible/nIR partitioning-based HDS-C map). Figure 8 shows
samples of pixels from the river-area and its surroundings,
which suggest indeed that this river can only be detected in
non-visible wavelengths.

0.9 T
0.81 === River pixel
Rock pixel

Reflectance

20 40 60 80 100 120 140 160 180
Spectral channel

Figure 8. Sample pixels from the “Jasper Ridge” scene: river area
(continuous line) and its surroundings (dashed). Clearly, perceptual attributes
are not relevant to segregate these reflectance curves as they are both very
little reflective in the visible range of wavelengths (channels 1 to 33). Among
the features of the SS model, it is likely that the angle measures the lowest
discrepancy as these curves look indeed very correlated. On the other
hand, the Euclidean distance and difference of standard deviations are most
definitely the discriminant attributes here.

The area containing a bright sand-like mineral at the bottom
left side of the scene is apparently its prominent feature, as

Results obtained on 2 images. Column-wise: true color composite, Mgg, SVS map [8]. Row-wise: “Jasper Ridge” and “"Norway” scenes.

all models detect it. Furthermore, the Mg maps suggest
that it is uniformly salient all over the spectrum, because
it is represented in white (uniform partitioning) and purple
(visible/nIR partitioning). Also the urban area at the right
side of the scene is detected as salient in the nIR.

On the “Norway” scene, the SS models globally detect
either portions of grass surrounded with buildings and/or
asphalt, or the other way around, because of the contrast
created in the nIR range, where lifeforms are particularly
reflective, unlike cold materials such as concrete or asphalt.
Aside from that, the prominent features appear to be the two
farm roofs and their close surroundings, although the SVS
model detects principally the red house roofs and the yellow
painting on the road.

The color maps thus allow to thoroughly interpret the scene
in terms of saliency and throughout the spectral dimension,
so as to understand which locations stand out and in which
ranges of wavelengths.

C. Application to composite evaluation

Despite the wide variety of existing dimensionality reduc-
tion methods, their automatic quality assessment for visual-
ization remains a very challenging and application-dependent
task. Jacobson et al. [21] introduced 9 general criteria (so-
called design goals) to do so: consistent rendering, edge
preservation, computational ease, color symbolism, equal en-
ergy white point, wavelength shift invariance (all wavelengths
are given an equal weight), smallest effective difference (visual
distinctions are no larger than needed to effectively show
relative differences), appropriate pre-attentive features and
natural palette. Aside from the computational ease (which
was used for instance in [22], [23]), these design goals can
roughly be categorized according to three general criteria:
the conveyed information from the raw, unreduced image,



Figure 9.

Example of enhanced saliency maps with two different partitioning: uniform (second column) and visible/nIR (third column). They show very

valuable information such as the river in the first image (surrounded by minerals) and the urban area in the second one (surrounded by vegetation) that stand

out mostly in the infrared.

the intrinsic information contained by the composite, and
finally the appeal, which is related to naturalness, intuitiveness
and ease of interpretation. Whereas the two first categories
are easily derived into objective and quantitative metrics and
measures, the appeal of an image pertains rather to a subjective
evaluation.

Since the SS model can be applied to any dimensionality,
it is possible to compare two images with different number
of channels. Consequently, it can be used to assess how
accurately a dimensionality reduction technique conveys in-
formation into a trichromatic composite. Because it uses both
perceptual and physical features, spectral saliency can be used
in regard to both the conveyed information and appeal criteria.

In order to compare the maps produced by the spectral
image and its corresponding composite, we propose to use
Shannon’s mutual information: I(X;Y’), which measures the
information shared by a couple of random variables X and
Y, with regard to the notion of entropy. Because it is usually
expressed in units such as bits or nats, which are not always a
intuitive to evaluate redundancy, we propose to normalize it so
as to represent a percentage of shared information, to obtain
what we refer to as the true mutual information. We know
indeed that I(X;Y") is bounded between zero and the minimal
entropy min [H(X), H(Y')], as the highest possible value for
I(X;Y) is when X “contains” (information-wise) Y or vice-
versa [24]. Thus, we propose a measure that will be referred
to as the Mutual Saliency (MS) of a couple of images B; and
B, based on the true mutual information between the maps
in high- and low-dimensionality:

I(My; Ms)
min [H(M); H(M3)]

where M; and M are two saliency maps of images with

MS(Bl; B2)|M1,M2 =

&)

the same spatial dimensions but a potentially different number
of spectral channels.

Figures 10 and 11 depict 6 different composites each, ob-
tained from the Jasper Ridge and Norway scenes, respectively.
Here is a brief overview of the dimensionality reduction
techniques used to obtain these composites:

e The true color approach is designed so as to imitate
the human visual system. It consists of a set of three
functions to project reflectance data to a trichromatic
color space. Although these functions are bounded to the
visible range of wavelengths, they can be stretched [17]
so as to fit any range of wavelengths, in order to obtain
what we refer to as a pseudo-true color composite.

o Principal Component Analysis (PCA) is a pure data-
analysis approach based on second order statistics and
of which 3 first components can be conveniently mapped
to, respectively the L*, a* and b* components of the
pseudo-uniform color space CIELAB [25], it can also be
derived into a local approach referred to as segmented
PCA [26].

« Band selection consists of preserving the bands during the
dimensionality reduction as the final composite is a subset
of the original set of bands. We used two approaches: one
based on orthogonality, the linear prediction-based band
selection (LPBS) [27] as well as one based on band-pass
filtering for coarse texture analysis, the one-bit-transform-
based band selection (1BTBS) [28].

Tables I and II give the results obtained with the proposed
measure as well as two others, for comparison: pg, the
correlation of pairwise angles as in [21] and v, which measures
naturalness as the average Euclidean distance over all pixels
in CIELAB between the considered composite and the true
color one, which serves as a ground truth for naturalness, as
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Figure 10. Example of composites from the Jasper Ridge scene. First row: composites (a) true color, (b) pseudo-true color, (c) PCA to CIELAB, (d)
segmented PCA, (e) LPBS and (f) IBTBS. Second row: corresponding saliency maps. If we focus on the central river (dark shape starting from the bottom
middle of the scene), we observe indeed various rendering of this object compared to its surroundings, and therefore different ways to convey saliency through
dimensionality reduction.

Table 1
SALIENCY-BASED EVALUATION OF DIMENSIONALITY REDUCTION TECHNIQUES: JASPER RIDGE SCENE COMPOSITES.
true color | pseudo-true color | PCA to CIELAB | segmented PCA | LPBS | IBTBS
MS 0.21 0.54 0.34 0.41 0.50 0.42
[2) 0.20 0.93 0.64 0.74 0.50 0.81
v 0.00 59.35 58.14 50.02 60.71 80.79

Figure 11. Example of composites from the Norway scene. First row: composites (a) true color, (b) pseudo-true color, (c) PCA to CIELAB, (d) segmented
PCA, (e) LPBS and (f) IBTBS. Second row: corresponding saliency maps from the SS model.
Table 1T
SALIENCY-BASED EVALUATION OF DIMENSIONALITY REDUCTION TECHNIQUES: NORWAY SCENE COMPOSITES.
true color | pseudo-true color | PCA to CIELAB | segmented PCA | LPBS | 1BTBS
MS 0.34 0.47 0.33 0.35 0.46 0.35
1) 0.27 0.83 0.72 0.78 0.87 0.68
v 0 35.19 45.80 30.65 42.39 40.53

in [29].

First of all, we observe drastic differences in terms of
rendering among the composites. Not only do they differ
by their overall naturalness, contrast and variety of colors,
they also have different pre-attentive properties. In particular,
we note that the true color and PCA to CIELAB composites
seem to contain slightly less salient objects than the other four,
despite the important contrasts yielded by PCA. Indeed, the
corresponding maps indicate fewer and more compact salient
regions in these composites. In particular, in the “Jasper
Ridge” scene, these composites are the only ones failing to
properly depict the central river, thus giving them the lowest
MS scores (34% and 33%). The same rankings are obtained
in the “Norway” scene, although in that one, the saliency

discrepancies are slightly more complex to evaluate. These
two composites also give the worst p scores, indicating a bad
preservation of pairwise pixel angles. These results can be
explained by the fact that the PCA-based approach drastically
stretches the data into orthogonal components and may thus
emphasizes contrasts and distorts saliency, whereas the true
color approach discards all the channels in the non-visible
range of wavelengths and therefore fails to properly retain the
full range of information contained in the scene. This also
suggests that perceptual attributes are not sufficient to fully
describe spectral saliency as we define it. On the other hand,
the best results in terms of MSare obtained by the pseudo-true
color strategy, with 54% for the first scene and 47% for the
second one. These composites are neither the most natural (v



scores of 59.35 and 35.19) nor the most contrasted, but they do
preserve the spectral saliency of the high-dimensional image.
Furthermore, we measured on these results a correlation as
low as 0.65 between MS and pg and 0.60 between MS and
v, which implies that our measure conveys a different kind of
information, although slightly correlated with both informative
content (pg) and naturalness (v). Note finally that despite the
discrepancies between all the false-color composites, which
induce unnatural and misleading renderings, the saliency maps
contain consistent information which can serve for interpreta-
tion and rapid scene understanding.

IV. CONCLUSIONS

We introduced the concept of spectral saliency for
multi/hyperspectral images analysis. Unlike traditional re-
search on saliency, this new concept pertains not to the focus
of attention, but should rather be seen as a novel approach to
feature extraction, taking into account both visual perception
and physical properties of the scene within a same framework.
In that, it presents all the advantages of spectral imaging over
trichromacy: able to detect metameric matches, not bounded
to visible wavelengths and device-independent. A spectrally
salient” object stands out from its neighborhood, not only
perceptually, but more generally in terms of reflectance, ac-
cording to the four simple features that were presented. A new
model was introduced to compute saliency maps from images
of any dimensionality. Particularly, we proposed to partition
the image spectrum so as to analyze spectral saliency locally
and eventually gather local results within a single highly-
information map in color, in order to depict not only which
objects stand out, but also in which range of wavelengths. The
resulting maps allow for an easy interpretation of the scene,
unlike false-color composites that can induce unnatural and
misleading renderings. Moreover, we tackled the evaluation
of trichromatic composites as a possible application of this
model. Results show that spectral saliency provides informa-
tion which are reliable for interpretation, scene understand-
ing and also image comparison. This information does not
correlate neither with visual saliency, second-order statistics
nor with naturalness. We are confident that many other
applications can be derived from the presented framework,
and particularly under the scope of visualization, but also for
image registration, segmentation and target detection.
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