Abstract : A nonlinear electrical transmission line with an intersite circuit element acting as a nonlinear resistance is introduced and investigated. In the continuum limit, the dynamics of localized signals is described by a nonlinear evolution equation belonging to the family of nonlinear diffusive Burgers' equations. This equation admits compact pulse solutions and shares some symmetry properties with the Rosenau-Hyman K(2,2) equation. An exact discrete compactly- supported signal voltage is found for the network and the dissipative effects on the pulse motion analytically studied. Numerical simulations confirm the validity of analytical results and the robustness of these compact pulse signals which may have important applications in signal processing systems.
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00870835 Contributeur : Patrick MarquiéConnectez-vous pour contacter le contributeur Soumis le : mardi 8 octobre 2013 - 11:51:28 Dernière modification le : dimanche 26 juin 2022 - 00:43:32 Archivage à long terme le : : jeudi 9 janvier 2014 - 04:27:47
Désiré Ndjanfang, David yémélé, Patrick Marquié, T. C. Kofane. Compact-like pulse signals in a new nonlinear electrical transmission line. Progress In Electromagnetics Research B, EMW Publishing, 2013, 52, pp.207-236. ⟨hal-00870835⟩