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Abstract

Notes on Eigen-decomposition, PCA; SVD and connexions.

1 Matrix preliminaries

A matrix is one way of describing (or representing) a linear transformation
between two vector spaces. For instance, a general m x n matrix A represents
a linear transformation from R"™ to R™.

The matrix acts on vectors x € R"™ to produce vectors y € R"™ as y = Ax. If

we represent the matrix as A = [cq, Co, ..., ¢y, where the ¢;’s are the columns
T
T2

of the matrix A, and the vector as x = | . |, then we have
T

n
y=Ax= Z%‘Cz‘, (1)
i=1
i.e. y is a linear combination of the columns of A.

1.1 Column space and nullspace

e The column space of A, denoted by C(A) and also called range or span
of A, is the subspace of R™ such that y € C(A) if and only if y = Ax for
some x € R".

e The nullspace of A, denoted by N(A) and also called kernel, is the subspace
of R™ such that z € N(A) if and only if Az = 0.

Note that the column space of a matrix A is exactly the span of all its
columns vectors. Therefore, C(A) is just the set of all linear combinations of
the columns of A.
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The nullspace of a matrix A is exactly the set of vectors which are orthogonal
to all its row vectors.

1 1 2
. . . 2 1 3

For example, consider the following matrix A = 3 1 4]
4 1 5

Since the columns of A are in R*, C(A) is a subspace of R*. On the other
hand, the nullspace N(A) contains all solutions to the equation Ax = 0. So
N(A) is a subspace of R3.

1.2 Rank of a matrix
The rank of a matriz is the dimension of its column space.
rank(A) = dim(C(A)). (2)

From this definition, we see that the rank of A is equal to the maximum
number of linearly independent columns (or rows) vectors of A.

Properties of rank
For arbitrary m x n matrix A and n X p matrix B, rank has the following
properties:

0 <rank(A) < min{m,n}

rank(A) = n — dim(N(A))

(A) = rank(AT)

rank(AB) < min(rank(A), rank(B))
rank(AT A) = rank(AAT) = rank(A)

rank

AN R I

1.3 Singular and non-singular matrices

A square n X n matrix A is said to be non-singular or invertible if there exist a
matrix B such that
AB=BA=1, (3)

where I is the n x n identity matrix.
B is called inverse of A and denoted by B = A1,

e For a n X n square matrix A to be invertible, A must be full rank, i.e.
rank(A) = n.

e If A~! does not exist, we say that the matrix is singular.
Assuming A and B are non-singular matrices:

o (A7H) =4

e (AB)"'=B714!

o (AT = (AT)~!



2 Eigenvalues/Eigenvectors

Let A be a square n X n matrix, i.e. a linear map from R" to itself.

2.1 Intuitive description

In the following simple example, we set n = 2.
Let A= B ﬂ, and let x; = E] and xo = [ﬂ be two vectors in R2.

When applying the linear transformation A to x; and x, wet get two new
4 3
4 1|

We can see that Ax; and x; are "parallel" vectors (i.e. they point in the
same direction) whereas Axs and x5 are in different directions. So, they are
some vectors in R? which are invariant (talking here about their direction) when
multiplying by A. Those vectors are called eigenvectors, and the scaling factors
(in our example Ax; = 4x1, so the factor is A = 4) are called eigenvalues of A.

Therefore, intuitively, eigenvectors are vectors of R™ that are "invariant"
under the linear transformation represented by A.

vectors in R?, respectively Ax; = and Axy =

2.2 Definition

Given a square n X n matrix A, we say that A € C is an eigenvalue of A and
x € C in the corresponding eigenvector if

Ax = Ax, x #0. (4)

The set of all eigenvalues of a matrix A is called its spectrum, denoted by
o(A).
The Matlab command [V, D] = eig(A) produces a diagonal matrix D of
eigenvalues and a full-rank matrix V" whose columns are the corresponding eigen-
vectors, so that AV =V D.

Properties of eigenvalues

e The sum of the eigenvalues of A is equal to its trace

trace(A) = Xn: A“‘ = Xn: )\,L'.

=1 =1

e The determinant of A is equal to the product of its eigenvalues

det(A4) = A =[] x.

i=1

e The rank of A is equal to the number of non-zero eigenvalues.



e If Ais a non-singular matrix (all of its eigenvalues are non-zero) then 1/X\;
is an eigenvalue of A~! with associated eigenvector x;.

Finding eigenvalues and eigenvectors
We can rewrite Eq. 4 as (A — AI)x = 0, x # 0, which mean that the non-zero
vector x is in the nullspace of the matrix (A — \I).

From the properties of rank, this also means that the matrix (A — A\I) is
singular. Therefore, we have

det(A— M) =|A—-XI|=0. (5)
To sum up, in order to find the eigenvalues/eigenvectors of A, we have to:

1. First find the eigenvalues which are the roots of the characteristic equation
det(A—XI)=0.

2. Once we know the eigenvalues, \’s, we just have to find the nullspaces of
the matrices (A — A\I) and any vector in these linear spaces is an eigen-

vector.
. 31
Consider an example, A = 1 3l
We first find the eigenvalues of A
det(A—an =P 7 b oo —1i=0—90—2)
1 3—A
. A =4
Thus the eigenvalues are equal to A —
1=

We finally find the eigenvectors

e For A\ =4
A-nr=A—ar=|71 1
v 1 -1
So a vector in the nullspace of (A —4I) is x; = {ﬂ
e For Ay =2
A-dl=A-2r=|" 1
2 Tl

So a vector in the nullspace of (A —2I) is g = [_11}

The reader can easily verify that Az; = A\jz1 and Axo = Aoxs. We can also
check that A\ + Ay = trace(A) = 6 and A\ Ay = det(A4) = 8.



2.3 Diagonalization and powers of A

Let A be a n x n matrix with n independent eigenvectors X;,i = 1...n. If we
put all eigenvectors as columns of a matrix S, then we have

AS = A[X1 Xy X,

[AX, AX, -+ AX,)

= XD AXs A X

N - 0

= X1 Xy - X)) | o
0 - A\,
= SA

Since the eignevectors of A are independent, the matrix S is invertible. So,
we have

AS =SA= A=SAS™!

This is called the diagonalization of A.
The reader can verify that the matrix A of the previous example can be

diagonalized as:
Aot 1[4 012 12
1 110 2]|-1/2 1/2

NOTE
e We can diagonalize A only if A has n independent eigenvectors.

e A is guaranteed to have independent eigenvectors if A has n different
eigenvalues.

o VEk>1, AF = SAFS!

2.4 Symmetric matrices

A square n x n matrix A is said to be symmetric if A = A7
Two remarkable properties of symmetric matrices are:

o All the eigenvalues of A are real (\; € R; Vi)

e The eigenvectors of A form an orthonormal basis of R”.

So we can diagonalize A as A = SAST.



3 SVD

The singular value decomposition (SVD) can be seen as a "generalization" of
the concept of eigenvalue-eigenvector pairs to non-square matrices. SVD is also
a useful tool to capture essential features of a matrix such as its rank and
nullspace. In short, SVD is the most useful factorization of a matrix.

Theorem
Let A € R™*™ be a general m X n matrix with rank equal to r. Furthermore,
suppose, without loss of generality, that m > n. Then

e JU € R™*" whose columns are orthonormal,
e 1V € R™™" whose columns are orthonormal, and
e 31X ¢ R™", ¥ = diag{o1,02,...,0,} diagonal with 1 > 09 > -+ > 0,

such that A =UXVT.

The factorization A = UXVT is the SVD of the matrix A and the above
theorem shows that such factorization always exists.

It has to be noticed that the rank of A is equal to the number of non-zero
singular values.

Relation with eigen-decomposition
Form A = UXV7T, we see that

ATA = wxvhHT(wzvT)
vauhwsvT)
vyt

This last equation ATA = VX2V7T is the diagonalization of the symmet-
ric matrix AT A. Similarly, we can show AAT = UX2U” which is the eigen-
decomposition (or diagonalization) of the symmetric matrix AA”.

Therefore, we can conclude that:

e the columns of the orthogonal matrix V are the eigenvectors of AT A,

e the columns of the orthogonal matrix U are the eigenvectors of AAT

e the singular values of A are the square roots of eigenvalues of AT A (or
AAT).

Properties of SVD

e The rank of a matrix is equal to the number of non-zero singular values.

e A square n X n matrix A is non-singular if and only if o; # 0 V.



e If Ais a n x n nonsingular matrix, then A~! is given by
ATt =Vt

where %! = diag{ -, -, -}

T on

3.1 Sum of rank one matrices

The SVD of an m x n matrix A of rank r is given by A = UXVT, which can
also be written as .
A= Z O’i’u,ﬂ)iT,
i=1

where u; and v; are the columns of U and V respectively.

Note that each term of this sum, i.e. each w;v}], is a m x n matrix of rank
one. So, the matrix A is a sum of rank one matrices that are orthogonal with
respect to the matrix inner product.

Truncating the sum at p terms defines a rank p matrix A4, = >1_, o;uv] .
If we approximate A with A,, then we make an error equals to £, = A — A, =
Zf:p L1 04uv] . Tt can be shown that A, is the best rank p approximation to
the matrix A.

The low rank approximation of a matrix can, for example, be used for image
compression.

4 PCA

Principal component analysis (PCA) is one of the most widely used technique
for data analysis.

The main goal of PCA is to reduce a complex data set to a lower dimension
to reveal the, sometimes hidden, simplified structure that underlines it. So, we
can see PCA essentially as a change of basis; and we would like to compute the
most meaningful basis to re-express our data with the hope that the new basis
will reveal hidden structure of the data and remove the redundancy.

4.1 Data representation

Say we have N samples, each of which is a point in R”. We represent our data
as a data matrix X = [X1,-- -, Xy, where each column X; represents a sample
point of dimension L. Thus, X is a matrix of size L x N.

The covariance matrix of the data is then given by the equation:

CX = XXT’ (6)

where X = [X; — X,--- , Xy — X] is the zero-mean data matrix (X being the
mean vector).



The covariance matrix Cx is a square L x L symmetric matrix that encodes
the correlation between the different features; the diagonal element of Cx con-
tain the variances of each feature, and the off-diagonal elements correspond to
the covariances between different features.

4.2 PCA derivation

First, note that if all our features were uncorrelated then the covariance matrix
would be diagonal. Since the goal is to remove redundancy in the data (which
corresponds to removing correlation between the variables), we have to find a
transformation (a change of basis) that makes Cx is diagonal matrix.

In other words, we want to find a matrix P, such that if Y = PX, then the
covariance matrix of Y is diagonal.

Since Cx is a symmetric matrix, we can diagonalize it as Cx = VAVT.
Which gives A = VT Cx V.

Let choose P = V7T, ie. Y = PX = VTX. Then, the covariance matrix of
transformed data Y is

Cy = YYT
= (VIxX)vrx)”
= VvIxXxhyv
= VIicyVv
A

So, setting P = VT makes the covariance matrix of transformed data to be
diagonal, what we wanted to achieve.

The rows of the matrix P are the vectors of the new basis on which to
re-express the data. This vectors are called principal components.

We can observe that

e The principal components of X are the eigenvectors of the covariance
matrix Cx.

e The corresponding eigenvalues give the amount of information carried by
each principal component.

4.3 Dimension reduction

Usually, we want to reduce the dimensionality of the problem, i.e. we want to
represent each of our data point in a lower dimensional space R¥, with K < L.

Dimensionality reduction is achieved by projecting the data points onto the
K principal components corresponding to the K largest eigenvalues of the co-
variance matrix Cx.

One question is how to choose the number of principal components (or how
to fix the value of K)? To choose K, we use the following criterion which takes
into account the amount of information carried by each eigenvector:



How many components to keep?
Choose K such that
K N

O M)/ X)) > Threshold.

=1 =1

Typical threshold values are 0.9 or 0.95.

It can be shown that the reconstruction error ¢ = HX — )/(\'H is minimized

using the principal components. This error is equal to

1 N
625 Z )\i.

i=K+1

Data normalization
Finally, note that the principal components depend on the units and range of
the original data. Therefore, we should always normalize the data prior to using
PCA. A common normalization method is to transform all the data to have zero
mean and unit standard deviation:

1 and o being, respectively, the mean and standard deviation of the X;’s.

4.4 PCA algorithm

Here, we summarize the methodology to perform PCA. Let x1,X2,...,Xy be
vectors in RE.

e Step 1: compute the mean vector X = % Zil X;.

e Step 2: subtract the mean &, = x; —Xfori=1,...,N.

e Step 3: form the L x N matrix A = [®; 5 --- §y] and compute
1 1
Y=—) ;0 = —AAT.
L2 % =]

e Step 4: compute the eigenvalues A\; > \o > --- > Ay, and the correspond-
ing eigenvectors uy, us, ..., uy of 3.

e Step 5: since Y. is symmetric, its eigenvectors form a basis. So any vector
— — L
X — X can be expressed as x —X =) ;" | biu,.

To perform dimensionality reduction, keep only the vectors corresponding
to the K largest eigenvalues:

K
X—X= Zbiui where K << N.
i=1



4.5 Size trick

In many applications, it happens that we have few data but many variables, i.e.
N < L. For example, if we have 100 images each of size 400x600, then our data
matrix X has dimensions N = 100 and L = 240, 000.

In such a case, computing the eigenvalues/eigenvectors of Cx as above may
be difficult if L is too large.

The size trick here is to work with the other covariance matrix

Ccy =XTX.

This new matrix is of size N x N instead of L x L as Cx.

Let C = V'A'V'T be the eigen-decomposition of Cy.

The fact is that both matrices Cx and C’y have the same non-zero eigen-
values (they have same rank). Hence, we have A = A’.

What about the eigenvectors?
Let x be an eigenvector of C’y. Then C’yx = Ax.

That is XTXx = Ax = (XX7)Xx = \Xx = ©(Xx) = A\Xx.

In other words, we have Cx (Xx) = A(Xx), and we can conclude that the
eigenvectors of Cx and those of C are related by the equation

V=XV

4.6 PCA & SVD

From Section 3, we know that the SVD of a matrix A is given by A = UAVT,
where U and V are orthogonal matrices.

Moreover, we have also seen that the columns of V' are the eigenvectors of
AAT | while the columns of U are eigenvectors of AT A.

So, we can perform PCA without computing the covariance matrix, but from
SVD directly (of course, after transforming the data to have zero-mean). The
advantage of this option is that we directly apply the size-trick. In short, if X
is an L x N matrix with N < L, then we know the rank of X is at most equal
to N (see properties of rank in Section 1.2). So we don’t need to compute all L
singular values (and vectors) of X as many of them will be zero. We can simply
compute N singular values (and the corresponding vectors), and this is exactly
the size-trick explained above.
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