The noise estimator NOLSE
Olivier Laligant, Frederic Truchetet, Eric Fauvet

To cite this version:
Olivier Laligant, Frederic Truchetet, Eric Fauvet. The noise estimator NOLSE. 2012. hal-00904176

HAL Id: hal-00904176
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00904176
Submitted on 13 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The noise estimator NOLSE

Authors
Olivier Laligant, Fred Truchetet and Eric Fauvet

November 13, 2013
The noise estimator NOLSE

Olivier LALIGANT, Frédéric TRUCHETET, Eric FAUVET
Le2i Lab., CNRS UMR 6306, Université de Bourgogne
12 rue de la Fonderie, 71200 Le Creusot, France
olivier.laligant@u-bourgogne.fr

November 13, 2013

This report is not self-content and presents complementary definitions and demonstrations for the paper "Noise estimation from digital step-model signal".

1 The polarized derivatives

1.1 The derivative

First, let us recall the fundamental definition of the derivative. Let \(f(x) \) be a function of a real variable and suppose that \(a \) is in the domain \(D \) of \(f \). The derivative of \(f \) at \(x = a \) is the limit:

\[
f'(a) = \lim_{u \to 0} \frac{f(a + u) - f(a)}{u}
\]

(1)

provided this limit exists. If this limit exists, then we say that \(f \) is differentiable at \(x = a \). In this case, \(f \) belongs to the class \(C^1 \) of differentiable signals. We emphasize that \(u \) can be a negative or a positive value. It is easy to find simple signals presenting non differentiable points (discontinuities for example) and mathematicians have found some continuous signals that are non differentiable everywhere. For discrete signals, the derivative does not exist, and the problem is reduced to defining an approximation of this derivative. The Taylor series permits one to define several approximations of this derivative, for example:

\[
f'(a) \approx \frac{f(a + 1) - f(a)}{1}
\]

(2)

1.2 Polarized and oriented components of the derivative

Let now introduce the real variables \(v > 0 \) and \(w < 0 \). In the continuous, we define case the oriented (Left/Right) and polarized (+/-) components of the
polarized derivatives as:

\[
\begin{align*}
 f'_{R+}(a) &= \left\{ \begin{array}{ll}
 \lim_{v \to 0} \frac{f(a+v)-f(a)}{v} & \text{if } \frac{f(a+v)-f(a)}{v} \geq 0 \\
 0 & \text{elsewhere}
 \end{array} \right. \\
 f'_{R-}(a) &= \left\{ \begin{array}{ll}
 0 & \text{if } \frac{f(a+v)-f(a)}{v} \geq 0 \\
 \lim_{v \to 0} \frac{f(a+v)-f(a)}{v} & \text{elsewhere}
 \end{array} \right. \\
 f'_{L+}(a) &= \left\{ \begin{array}{ll}
 \lim_{w \to 0} \frac{f(a+w)-f(a)}{w} & \text{if } \frac{f(a+w)-f(a)}{w} \geq 0 \\
 0 & \text{elsewhere}
 \end{array} \right. \\
 f'_{L-}(a) &= \left\{ \begin{array}{ll}
 0 & \text{if } \frac{f(a+w)-f(a)}{w} \geq 0 \\
 \lim_{w \to 0} \frac{f(a+w)-f(a)}{w} & \text{elsewhere}
 \end{array} \right.
\end{align*}
\]

In the discrete domain and introducing the nonlinear threshold operator \(T \) \((T(u) = u \text{ if } u \geq 0, 0 \text{ elsewhere})\) the polarized, oriented discrete derivatives \(y_{k}^{R+}, y_{k}^{R-}, y_{k}^{L+} \) and \(y_{k}^{L-} \) of a signal \(x \) can be defined as:

\[
\begin{align*}
 y_{k}^{R+} &= T(x_{k+1} - x_{k}) \\
 y_{k}^{R-} &= -T[-(x_{k+1} - x_{k})] \\
 y_{k}^{L+} &= T(x_{k} - x_{k-1}) \\
 y_{k}^{L-} &= -T[-(x_{k} - x_{k-1})]
\end{align*}
\]

Defining the polarized and oriented derivative operators \(D_{R+}, D_{L+} : \mathbb{R} \to \mathbb{R}^+, D_{R-}, D_{L-} : \mathbb{R} \to \mathbb{R}^- \), the above equations are now written as:

\[
\begin{align*}
 y^{R+} &= D_{R+}(x) \\
 y^{R-} &= D_{R-}(x) \\
 y^{L+} &= D_{L+}(x) \\
 y^{L-} &= D_{L-}(x)
\end{align*}
\]

Note that in a 3-neighborhood, combined operators having interesting properties for edge detection [2] can be defined.

The combined operators \(D^+ \) and \(D^- \) have interesting properties in edge detection [2]. Considering the same local neighborhood they lead to improvements in localization and signal to noise ratio compared to the classical derivative operator \((1-z^{-1})\).

\section{The noise estimator}

\subsection{Noise signal components}

From the signals in the above section, we propose to define the noise components:

\[
\begin{align*}
 y^+ &= \min (y^{L+}, -y^{R-}) \\
 y^- &= -\min (-y^{L-}, y^{R+})
\end{align*}
\]
Considering y^+, the components are:

$$y_k^L^+ = \begin{cases} x_k - x_{k-1} & \text{if } x_k \geq x_{k-1} \\ 0 & \text{elsewhere} \end{cases}$$ \hspace{1cm} (10)

$$y_k^R^- = \begin{cases} 0 & \text{if } x_{k+1} > x_k \\ x_{k+1} - x_k & \text{elsewhere} \end{cases}$$ \hspace{1cm} (11)

and we have the following:

$$y_k^+ = \begin{cases} 0 & \text{if } x_{k-1} \leq x_k < x_{k+1} \\ \min (x_k - x_{k-1}, -x_{k+1} + x_k) & \text{if } x_{k-1} \leq x_k \geq x_{k+1} \\ 0 & \text{if } x_{k-1} > x_k < x_{k+1} \\ 0 & \text{if } x_{k-1} > x_k \geq x_{k+1} \end{cases}$$ \hspace{1cm} (12)

y_k^+ is always positive or null ($y_k^+ \geq 0$). Introducing the noisy step model to show that the y_k^+ component can be used to measure the noise values:

$$x_k = A.H_k + n_k$$ \hspace{1cm} (13)

where H_k is the Heaviside function: $H_k = 1$ if $k \geq 0$, 0 elsewhere, A the amplitude and n_k the noise signal. From this, we develop y^+_0.

2.1.1 For $k \notin \{-1, 0, 1\}$:

$$y_k^+ = \begin{cases} \min (n_k - n_{k-1}, -n_{k+1} + n_k) & \text{if } n_{k-1} \leq n_k \geq n_{k+1} \\ 0 & \text{elsewhere} \end{cases}$$ \hspace{1cm} (14)

or:

$$y_k^+ = \begin{cases} n_k + \min (-n_{k-1}, -n_{k+1}) & \text{if } n_{k-1} \leq n_k \geq n_{k+1} \\ 0 & \text{elsewhere} \end{cases}$$ \hspace{1cm} (15)

Finally:

$$y_k^+ = \begin{cases} n_k - \max (n_{k-1}, n_{k+1}) & \text{if } n_{k-1} \leq n_k \geq n_{k+1} \\ 0 & \text{elsewhere} \end{cases}$$ \hspace{1cm} (16)

2.1.2 For $k \in \{-1, 0, 1\}$:

$$y_0^+ = \begin{cases} \min (A + n_0 - n_{-1}, n_0 - n_1) & \text{if } -A + n_{-1} \leq n_0 \geq n_1 \\ 0 & \text{elsewhere} \end{cases}$$ \hspace{1cm} (17)

The desired equation for y_0^+ to estimate the noise should be $y_0^+ = \min (n_0 - n_{-1}, n_0 - n_1)$, meaning A can influence the result of Eq. 17:

- If $A \leq 0$ (and $y_0^+ \geq 0$)
It is important to note that the influence of $A < y$ are as follows:

- if $(n_0 - n_{-1}) \geq (n_0 - n_1)$ or $(n_{-1} - n_1) \leq 0$, A does not influence the result
- if $(n_0 - n_{-1}) < (n_0 - n_1)$ or $(n_{-1} - n_1) > 0$,
 * if $(A + n_0 - n_{-1}) < (n - n_1)$ or $A < (n_{-1} - n_1)$, the result of the min function is biased by A: $(A + n_0 - n_{-1})$
 * else the min function does not give the correct term: $(n_0 - n_1)$ instead of $(n_0 - n_{-1})$

• if $A < 0$ (and $y_0^+ \geq 0$), we examine $\min (|A| + n_0 - n_{-1}, n_0 - n_1)$

- if $(n_0 - n_{-1}) \leq (n_0 - n_1)$ or $(n_{-1} - n_1) \geq 0$, the result is biased by A
- if $(n_0 - n_{-1}) > (n_0 - n_1)$ or $(n_{-1} - n_1) < 0$,
 * if $(-|A| + n_0 - n_{-1}) > (n - n_1)$ or $A > (n_{-1} - n_1)$, A does not influence the result $(n_0 - n_1)$
 * else the min function yields the wrong and biased term: $(A + n_0 - n_{-1})$

It is important to note that the influence of $A < 0$ is limited by the condition $y_0^+ \geq 0$. For the two other points, we have:

\[
\begin{align*}
y_{-1}^- &= \begin{cases}
\min (n_{-1} - n_{-2}, n_{-1} - n_0 - A) & \text{if } n_{-2} \leq n_{-1} \geq A + n_0 \\
0 & \text{elsewhere}
\end{cases} \\
y_1^+ &= \begin{cases}
\min (A + n_1 - n_0, n_1 - n_2) & \text{if } -A + n_0 \leq n_1 \geq n_2 \\
0 & \text{elsewhere}
\end{cases}
\end{align*}
\]

These equations show that the effect of the amplitude A is identical. The influence of A on the estimator will be quantified in Section 2.2.

2.2 Influence of edge density and edge model on the estimator

In this section, we quantify the edge influence on the final noise estimate.

2.2.1 Step edge density

Let us consider the step edge model and the signal in Fig. 1(a) presenting the highest density of edge model profiles. The first equations of the noisy version are as follows:

\[
\begin{align*}
y_1^+ &= \min (n_1 - n_0, n_1 - n_2 - A), \quad y_1^+ \geq 0 \\
y_2^+ &= \min (A + n_2 - n_1, n_2 - n_3), \quad y_2^+ \geq 0 \\
y_3^+ &= \min (n_3 - n_2, A + n_3 - n_4), \quad y_3^+ \geq 0 \\
y_4^+ &= \min (n_4 - n_3 - A, n_4 - n_5), \quad y_4^+ \geq 0 \\
y_5^+ &= \ldots
\end{align*}
\]

4
Figure 1: Highest edge density \((D = 1\text{ or }100\%)\). (a) step edge model, (b) a more realistic edge model. \(L_P\) edge pattern length.

The edge amplitude \(A\) and its opposite \(-A\) appear in these equations. We will estimate the influence of edges on the noise estimator by calculating the pdf of \(y_1^+\) and \(y_2^+\). Rewriting \(y_1^+\) and \(y_2^+\) as

\[
\begin{align*}
 y_1^+ &= n_1 - \max(n_0, n_2 + A), \quad y_1^+ \geq 0 \\
 y_2^+ &= n_2 - \max(-A + n_1, n_3), \quad y_2^+ \geq 0
\end{align*}
\]

we have for the random variable \(M\) associated with the maximum of \(y_1^+\):

\[
P_M(v) = P_{N_0}(v).P_{N_2+A}(N_2 + A < v) + P_{N_0}(N_0 < v).P_{N_2+A}(v)
\]

seeing:

\[
P_{N_2+A}(u) = P_{N_2}(u + A)
\]

we deduce:

\[
P_M(v) = P_{N_0}(v). \int_{-\infty}^{v} P_{N_2}(x + A).dx + P_{N_2}(v + A). \int_{-\infty}^{v} P_{N_0}(x).dx
\]

and then:

\[
P_{Y_1}(y \geq 0) = \int_{-\infty}^{\infty} P_{N_1}(n).P_{N_0}(n + A - y).dn \\
 \times \int_{-\infty}^{n-y} P_{N_2}(x).dx \\
 + \int_{-\infty}^{\infty} P_{N_1}(n).P_{N_2}(n - y).dn \\
 \times \int_{-\infty}^{n-y} P_{N_0}(x + A).dx
\]

Replacing \(A\) by \(-A\) in the previous equation leads to \(P_{Y_2}\). Finally, the second moment on the biased noise variable \(Y_A\) (modeling the measurement under the influence of the edge) is given by the following

\[
E \left[Y_A^2 \right] = \int_{0}^{\infty} y^2 \cdot \frac{P_{Y_1}(y) + P_{Y_2}(y)}{2}.dy
\]
For Gaussian white noise, the biased random variable of the estimator is

$$S_A^2 = \frac{8}{\pi} \frac{1}{N} \sum_{k=1}^{N} Y_A^2$$

and its expected value is

$$E[S_A^2] = \frac{8}{\pi} \frac{1}{N} \sum_{k=1}^{N} E[Y_A^2]$$

The bias is a maximal if $A \gg \sigma$ and then:

$$E[S_{Am}^2] = \frac{8}{\pi} \frac{\sigma^2}{2}$$

It follows that in the presence of the highest density of edges, the maximum effect of the edge influence corresponds to the following maximum value of the biased estimator:

$$E[S_{Am}^2] \simeq 1.27\sigma^2$$

Fig. 2 presents the bias on the estimated variance with respect to the amplitude

![Graph showing the influence of edge amplitude on the variance estimate for a 100% edge density.](image)

Figure 2: Influence of edge amplitude on the variance estimate for a 100% edge density (Gaussian white noise $\sigma^2 = 1$). The maximum value ($1.27\sigma^2$) for the biased variance is reached for high amplitudes; it decreases as the edge density decreases. $E[S_{Am}^2] = \sigma^2 (1 + D \left(\frac{4}{\pi} - 1 \right))$ where D is the edge density ([0, 1]).

of the edges. Defining the edge density as follows:

$$D = \frac{4}{L_P}$$

where L_P (see Fig. 1) is the length of the (repeated) edge profile, and 4 stands for the minimum number of pixels to define an edge profile, we obtain the influence of the edge density on the variance

$$E[S_{Am}^2] = \sigma^2 \left(1 + D \left(\frac{4}{\pi} - 1 \right)\right)$$

The estimate tends toward the true variance as the edge density decreases.
2.2.2 Realistic edge model

In real images, the projection of a step edge on the sensor does not truly correspond to a Heaviside function \[\mathcal{H} \]. Among the different effects of the acquisition system \[\mathcal{A} \], the integration pixel surface induces an edge profile \(C_r \) that we will model as follows:

\[
C_r(k) = \begin{cases}
0 & \text{if } k < 0 \\
\alpha A & \text{if } k = 0 \\
A & \text{if } k > 0
\end{cases}
\]

with \(A \) representing the edge amplitude and \(\alpha \) \((0 \leq \alpha \leq 1)\) the partial integration of the intermediate pixel value (see Fig. 1b). Fig. 3 presents the effect of a more realistic edge model on the variance estimate. Considering Fig. 1b, three equations are sufficient to obtain the biased variance estimate for 100% edge density:

\[
\begin{align*}
 y_1^+ &= \min(n_1 - n_0, n_1 - n_2 - \alpha A), & y_1^+ &\geq 0 \\
 y_2^+ &= \min(n_2 + \alpha A - n_1, n_2 + \alpha A - n_3 - A), & y_2^+ &\geq 0 \\
 y_3^+ &= \min(n_3 + A - n_2 - \alpha A, n_3 + A - n_4 - A), & y_3^+ &\geq 0 \\
 y_4^+ &= ...
\end{align*}
\]

Figure 3: Influence of realistic edge amplitude on the variance estimate for an edge density of 100% edge density (Gaussian white noise \(\sigma^2 = 1 \)). This density corresponds to a periodicity of 6 pixels. The variance decreases as the edge amplitude increases; the noise cannot be separated from the signal.
we deduce the general equation:

\[
P_Y(k|y \geq 0) = \int_{-\infty}^{\infty} P_{N_k}(n).P_{N_{k-1}}(n+B-y).dn \\
\times \int_{-\infty}^{n-y} P_{N_{k+1}}(x+C).dx \\
+ \int_{-\infty}^{\infty} P_{N_k}(n).P_{N_{k+1}}(n+C-y).dn \\
\times \int_{-\infty}^{n-y} P_{N_{k-1}}(x+B).dx
\]

where:

\[
\begin{cases}
 B = 0, \ C = -\alpha A & \text{for } P_Y_1 \\
 B = \alpha A, \ C = -(1-\alpha)A & \text{for } P_Y_2 \\
 B = (1-\alpha)A, \ C = 0 & \text{for } P_Y_3
\end{cases}
\]

It follows the biased noise variance of \(Y_A \) is given by:

\[
E[Y_A^2] = \int_{0}^{\infty} y^2. P_Y_1(y) + P_Y_2(y) + P_Y_3(y).dy
\]

For gaussian white noise, the biased random variable of the estimator is:

\[
S_A^2 = \frac{8}{\pi} \frac{1}{N} \sum_{k=1}^{N} Y_A^2
\]

and its variance:

\[
E[S_A^2] = \frac{8}{\pi} \frac{1}{N} \sum_{k=1}^{N} E[Y_A^2]
\]

The bias is maximum if \(A \to \infty \) and then:

\[
E[S_{A_m}^2] = \frac{8}{\pi} \frac{\sigma^2}{3}
\]

In presence of the highest density of edges, the maximum effect of edge influence correspond mostly to this value of the biased estimator:

\[
E[S_{A_m}^2] \simeq 0.849\sigma^2
\]

Considering the intermediate pixel (\(\alpha A \)), for high edge amplitude (compared to the noise level), the effect of the noise is equivalent to a new value of \(\alpha \): \(\alpha' \). If \(0 \leq \alpha' \leq 1 \), the algorithm cannot separate the noise from the signal because the profile does not, in this case, contain any impulse part. If we suppose \(\alpha \) represents a random variable characterized by a uniform distribution, for \(A \gg \sigma \) we have \(E[S_A^2] \simeq 0.87\sigma^2 \) (the variance estimate varies between 0.85
Let us consider the random variable S^2 associated with the estimator $S^2 = K_2N^{-1} \sum_{k=1}^{N} Y_k^2$. The variance is:

$$Var(S^2) = E[S^4] - E[S^2]^2 = E \left[\left(\frac{K_2}{N} \sum_{k=1}^{N} Y_k^2 \right)^2 \right] - E \left[\frac{K_2}{N} \sum_{k=1}^{N} Y_k^2 \right]^2$$

or:

$$\frac{N^2}{K_2} Var(S^2) = E[Y_4^2] + (2N - 2).Y_1^2 Y_2^2 + (2N - 4).Y_1^2 Y_2^2 + \ldots + \frac{2}{N}(N - 5) + 6).Y_1^2 Y_2^2] - N^2.E[Y^2]^2.$$

We have $E[Y_1^2 Y_2^2] = 0$ because there is no correlation between two consecutive measures:

$$y_k = \begin{cases} n_k - \max(n_{k-1}, n_{k+1}) & \text{if } n_{k-1} \leq n_k \leq n_{k+1} \\ 0 & \text{if } n_{k-1} > n_k \\ \text{elsewhere} & \text{if } n_{k-1} < n_k \\ \text{elsewhere} & \text{else} \\ y_{k-1} = \begin{cases} n_{k-1} - \max(n_{k-2}, n_k) & \text{if } n_{k-2} \leq n_{k-1} \leq n_k \\ 0 & \text{if } n_{k-2} > n_{k-1} \\ \text{elsewhere} & \text{else} \\ \end{cases} \\
\end{cases}$$

It follows:

$$\frac{N^2}{K_2} Var(S^2) = N.E[Y_4^2] + (2N - 4).E[Y_1^2 Y_2^2] + (-5N + 6).E[Y^2]^2$$

where $E[Y^2] = \int_{-\infty}^{\infty} y^2 P_Y(y).dy$ and $E[Y^4] = \int_{-\infty}^{\infty} y^4 P_Y(y).dy$. The term $E[Y_1^2 Y_2^2]$ needs to be evaluated because there is a correlation between two measures separated by one value. To simplify the notation, we consider again the first terms to develop the equations (we suppose here that n_0 exists):

$$y_1 = n_1 - \max(n_0, n_2) \text{ if } n_0 \leq n_1 \geq n_2, 0 \text{ elsewhere}$$

$$y_3 = n_3 - \max(n_2, n_4) \text{ if } n_2 \leq n_3 \geq n_4, 0 \text{ elsewhere}$$
We first determine the joint probability \(P_{Y_1Y_3}(y_1, y_3) \) in order to deduce \(E \left[Y_1^2 Y_3^2 \right] = \int_{-\infty}^{+\infty} y_1^2 y_3^2 P_{Y_1Y_3}(y_1, y_3) dy_1 dy_3 \). As \(Y_1, Y_3 \) are not independent, we write \(P_{Y_1Y_3}(y_1, y_3) \), with the conditional probabilities as follows:

\[
P_{Y_1Y_3}(y_1, y_3) = \int_{-\infty}^{+\infty} P_{Y_1/U}(y_1, u).P_{Y_3/U}(y_3, u).P_U(u).du
\]

where \(U = N_2 \) is the shared random variable between \(Y_1 \) and \(Y_3 \) \((u = n_2 \) is the common sample between \(y_1 \) and \(y_2 \)). Let us examine the conditional probability \(P_{Y_1/U}(y_1, u) \) where two cases need to be detailed depending on the variable \(N_0 \) and the value \(u \):

if \(N_0 \geq u \)

we have \(Y_1 = N_1 - N_0 | Y_1 \geq 0 \), we deduce \((y_1 = n_1 - n_0)\):

\[
P_{Y_1/U}(y_1, u) = \int_{u}^{+\infty} P_{N_1}(y_1 + u).P_{N_0}(n_0)dn_0
\]

if \(N_0 < u \)

we obtain \(Y_1 = N_1 - u | Y_1 \geq 0 \), we deduce \((y_1 = n_1 - u)\):

\[
P_{Y_1/U}(y_1, u) = P_{N_1}(y_1 + u) \int_{-\infty}^{u} P_{N_0}(n_0)dn_0
\]

and then:

\[
P_{Y_1/U}(y_1, u) = P_{N_1}(y_1 + u) \int_{-\infty}^{u} P_{N_0}(n_0)dn_0 + \int_{u}^{+\infty} P_{N_1}(y_1 + n_0).P_{N_0}(n_0)dn_0
\]

The conditional probability for \(P_{Y_3/U}(y_3, u) \) is identical and finally:

\[
Var(S^2) = K_2^2 \frac{1}{N^2}. \left\{ N.E \left[Y^4 \right] \right. + (2N - 4).E \left[Y_1^2 Y_3^2 \right] \}
\]

\[
+ K_2^2 \frac{1}{N^2}. \left\{ (-5N + 6).E \left[Y^2 \right]^2 \right. \}
\]

For a gaussian white noise of variance \(\sigma^2 \) \((E \left[Y^4 \right] \simeq \frac{2\pi^2}{13} \sigma^4, E \left[Y_1^2 Y_3^2 \right] \simeq \frac{\pi^2}{4} \sigma^4, E \left[Y^2 \right]^2 = \frac{\pi^2}{4} \sigma^4 \) and then:

\[
\frac{\pi^2 N^2}{8}.Var \left(S^2 \right) \simeq N.\frac{2}{13}\pi^2 \sigma^4 + (2N - 4)\frac{1}{4}\pi^2 \sigma^4 + (-5N + 6)\frac{1}{4}\pi^2 \sigma^4.
\]

For a long signal:

\[
Var \left(S^2 \right) \simeq \frac{8^2}{N} \left(\frac{2}{13} + \frac{2}{41} - \frac{5}{8^2} \right) \sigma^4 \simeq \frac{8}{N} \sigma^4
\]
3 Code of $NOLSE_2$

% -- fnolse(Im, type_noise)
% Inputs: - Im the noisy image
% - type_noise in { 'gaussian', 'salt & pepper', 'exponential', 'poisson', 'speckle' }
% Outputs: v1D v2D (variance estimation in 1D and 2D)
% comment2, comment1 : results with comments
% image_v : image containing the norm of the four measures
% y1, y2, y3, y4 : images containing the noise measures
%
% Noise estimator in images
% C. Olivier LALIGANT, 2009-10
%
% No optimization !
%
% Tested on octave (+package image) and Matlab V7R14
%
function [v2D, v1D, comment2, comment1, image_v, y1, y2, y3, y4] = fnolse(Im, type_noise)

%size(Im)
if(nargin == 2)
else
 comment = sprintf('nolse(Image, 'type_noise');
');
 disp(comment);
 comment = printf(' 'type_noise' = {gaussian', 'salt & pepper', ...
 'exponential', 'poisson', 'speckle'}
');
 disp(comment);
 return;
end

border = 1; % border preservation
% verif. dim. for 1D estimators
[ni, nj] = size(Im);
a12=0; a34=0;
if((nj-2*border) > 1) a12=1;
end
if((ni-2*border) > 1) a34=1;
end
if((a12==0) & (a34==0)) disp('pb dimensions');
return;
end

% dim. verif. for 2D estimators
if((a12 == 0) | (a34 == 0))
 disp('1D Signal => nonvalid 2D operators !');
end

% --- y1 estimator ---
yjp = min(DjLp(Im), -DjRn(Im));
y1 = min(DiLp(yjp), -DiRn(yjp));
v1 = mse(y1, border) * 4;
% 1D estimator
s2_1 = mse(yjp, border) / (pi/8);

% --- y2 estimator ---
yjn = -min(DjRp(Im), -DjLn(Im));
y2 = -min(DiRp(yjn), -DiLn(yjn));
v2 = mse(y2, border) * 4;
% 1D estimator
s2_2 = mse(yjn, border) / (pi/8);

% --- y3 estimator ---
yip = min(DiLp(Im), -DiRn(Im));
y3 = min(DjLp(yip), -DjRn(yip));
v3 = mse(y3, border) * 4;
% 1D estimator
s2_3 = mse(yip, border) / (pi/8);

% --- y4 estimator ---
yin = -min(DiRp(Im), -DiLn(Im));
y4 = -min(DjRp(yin), -DjLn(yin));
v4 = mse(y4, border) *4;
% 1D estimator
s2_4 = mse(yin, border) / (pi/8);

% mean of the estimators
s2 = (a12*s2_1 + a12*s2_2 + a34*s2_3 + a34*s2_4)/(2*a12+2*a34);
v = (v1 + v2 + v3 + v4) / 4;
image_v = sqrt(y1.^2+y2.^2+y3.^2+y4.^2);
vp = (v1 + v3) / 4;
vn = (v2 + v4) / 4;

switch(type_noise)
 case {'salt & pepper'}
 v1D = 0; % results reported in the strings comment1 and comment2
 v2D = 0;
e=1/0.82269; % slope correction
K = 1.2036; % model correction
vi = K * v^e;
vip = K*(v^e/2*(1-e) + e*v^(-1)*vp);
vin = K*(v^e/2*(1-e) + e*v^(-1)*vn);
 comment1 = sprintf('Salt & pepper (2D) nolse estimator %f\n', s2);
 comment2 = sprintf('pepper %f salt %f \n', vin, vip);
 case {'speckle'}
 comment1 = sprintf('Speckle noise\n');
 comment2 = sprintf('2D nolse estimator: variance = %f\n', v);
 v1D = -1;
v2D = v;
case {'poisson'}
 comment1 = sprintf('Poisson noise
');
 comment2 = sprintf('2D nolse estimator: lambda = %f\n', v);
 v1D = -1;
 v2D = v;
case {'gaussian'}
 comment1 = sprintf('Gaussian noise
');
 comment2 = sprintf('1D nolse estimator: variance = %f\n', s2);
 comment2 = sprintf('2D nolse estimator: variance = %f\n', v);
 v1D = s2;
 v2D = v;
case {'exponential'}
 comment = sprintf('Exponential noise : p(x)=1/2B.exp(-|x|/B)\n');
 m = mean(mean((yjp-yjn)*a12+(yip-yin)*a34))/(2*a12+2*a34);
 v1D = 8/3*m;
 comment1 = sprintf('1D nolse estimator: B = %f\n', v1D);
 m = mean(mean(y1-y2+y3-y4))/4;
 v2D = sqrt(2)*8/3*m;
 comment2 = sprintf('2D nolse estimator: B = %f\n', v2D);
otherwise
 disp('Noise not handled');
 comment1 = sprintf('other case: gaussian 1D nolse estimator %f\n', s2);
 comment2 = sprintf('other case: gaussian 2D nolse estimator %f\n', v);
 v1D = s2;
 v2D = v;
end
end

% operators D+, D-
function yjLp = DjLp(Im)
yjLp = thresh0(conv2(Im, [0 1 -1], 'same'));
end

function yjRn = DjRn(Im)
yjRn = -thresh0(-conv2(Im, [1 -1 0], 'same'));
end

function yiLp = DiLp(Im)
yiLp = thresh0(conv2(Im, [0; 1; -1], 'same'));
end

function yiRn = DiRn(Im)
yiRn = -thresh0(-conv2(Im, [1; -1; 0], 'same'));
end

function yjRp = DjRp(Im)
yjRp = thresh0(conv2(Im, [1 -1 0], 'same'));
end
function yjLn = DjLn(Im)
yjLn = -thresh0(-conv2(Im, [0 1 -1], 'same'));
end

function yiRp = DiRp(Im)
 yiRp = thresh0(conv2(Im, [1; -1; 0], 'same'));
end

function yiLn = DiLn(Im)
yiLn = -thresh0(-conv2(Im, [0; 1; -1], 'same'));
end

end operators D+, D-

function st = thresh0(s)
st = s.*(sign(s)+1)/2;
end

References

