M. Abràmoff, M. Garvin, and M. Sonka, Retinal Imaging and Image Analysis, IEEE Reviews in Biomedical Engineering, vol.3, pp.169-208, 2010.
DOI : 10.1109/RBME.2010.2084567

C. Baudoin, B. Lay, and J. Klein, Automatic detection of microaneurysms in diabetic fluorescein angiography., Revue d'´ epidémiologie et de santé publique, pp.3-4, 1984.

T. Spencer, J. A. Olson, K. C. Mchardy, P. F. Sharp, and J. V. Forrester, An Image-Processing Strategy for the Segmentation and Quantification of Microaneurysms in Fluorescein Angiograms of the Ocular Fundus, Computers and Biomedical Research, vol.29, issue.4, pp.284-302, 1996.
DOI : 10.1006/cbmr.1996.0021

A. J. Frame, P. E. Undrill, M. J. Cree, J. A. Olson, K. C. Mchardy et al., A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms, Computers in biology and medicine, pp.225-238, 1998.
DOI : 10.1016/S0010-4825(98)00011-0

M. Niemeijer, B. Van-ginneken, J. Staal, M. Suttorp-schulten, and M. Abràmoff, Automatic detection of red lesions in digital color fundus photographs, Medical Imaging, IEEE Transactions on, vol.24, issue.5, pp.584-592, 2005.

T. Spencer, R. Phillips, P. Sharp, and J. Forrester, Automated detection and quantification of microaneurysms in fluorescein angiograms, Graefe's archive for clinical and experimental ophthalmology, pp.36-41, 1992.

M. Cree, E. Gamble, and D. Cornforth, Colour normalisation to reduce inter-patient and intra-patient variability in microaneurysm detection in colour retinal images

M. Foracchia, E. Grisan, and A. Ruggeri, Luminosity and contrast normalization in retinal images, Medical Image Analysis, vol.9, issue.3, pp.179-190, 2005.
DOI : 10.1016/j.media.2004.07.001

T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin et al., Automatic detection of microaneurysms in color fundus images, Medical Image Analysis, vol.11, issue.6, pp.555-566, 2007.
DOI : 10.1016/j.media.2007.05.001

C. Köse, U. ¸evik, C. Ikiba¸sikiba¸s, and H. , Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images, Computer methods and programs in biomedicine, pp.274-293, 2012.

M. D. Saleh and C. Eswaran, An automated decision-support system for non-proliferative diabetic retinopathy disease based on mas and has detection , Computer methods and programs in biomedicine, pp.186-196, 2012.

C. Sánchez, R. Hornero, A. Mayo, M. García, and M. Lopez, Mixture modelbased clustering and logistic regression for automatic detection of microaneurysms in retinal images, SPIE Medical Imaging Computer- Aided Diagnosis, vol.7260, p.72601, 2009.

I. Lazar, A. Hajdu, and R. Quareshi, Retinal microaneurysm detection based on intensity profile analysis, 8th International Conference on Applied Informatics, 2010.
DOI : 10.1109/tmi.2012.2228665

URL : http://hdl.handle.net/2437/160255

I. Lazar and A. Hajdu, Retinal microaneurysm detection through local rotating cross-section profile analysis, Medical Imaging, IEEE Transactions on, vol.32, issue.2, pp.400-407, 2013.
DOI : 10.1109/tmi.2012.2228665

URL : http://hdl.handle.net/2437/160255

B. Zhang, X. Wu, J. You, Q. Li, and F. Karray, Detection of microaneurysms using multi-scale correlation coefficients, Pattern Recognition, vol.43, issue.6, pp.2237-2248, 2010.
DOI : 10.1016/j.patcog.2009.12.017

S. Abdelazeem, Micro-aneurysm detection using vessels removal and circular Hough transform, Proceedings of the Nineteenth National Radio Science Conference, pp.421-426, 2002.
DOI : 10.1109/NRSC.2002.1022650

A. Mizutani, C. Muramatsu, Y. Hatanaka, S. Suemori, T. Hara et al., Automated microaneurysm detection method based on double ring filter in retinal fundus images, Medical Imaging 2009: Computer-Aided Diagnosis, p.72601, 2009.
DOI : 10.1117/12.813468

D. Youssef and N. H. Solouma, Accurate detection of blood vessels improves the detection of exudates in color fundus images, Computer methods and programs in biomedicine

M. Fraz, S. Barman, P. Remagnino, A. Hoppe, A. Basit et al., An approach to localize the retinal blood vessels using bit planes and centerline detection, Computer Methods and Programs in Biomedicine, vol.108, issue.2, pp.600-616, 2012.
DOI : 10.1016/j.cmpb.2011.08.009

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka et al., Blood vessel segmentation methodologies in retinal images ??? A survey, Computer Methods and Programs in Biomedicine, vol.108, issue.1, pp.407-433, 2012.
DOI : 10.1016/j.cmpb.2012.03.009

G. Quellec, M. Lamard, P. Josselin, G. Cazuguel, B. Cochener et al., Optimal wavelet transform for the detection of microaneurysms in retina photographs, Medical Imaging, IEEE Transactions on, vol.27, issue.9, pp.1230-1241, 2008.

L. Giancardo, F. Meriaudeau, T. Karnowski, K. Tobin, Y. Lic et al., Microaneurysms detection with the radon cliff operator in retinal fundus images, Medical Imaging 2010: Image Processing, pp.76230-76231, 2010.
DOI : 10.1117/12.844442

L. Giancardo, F. Meriaudeau, T. Karnowski, Y. Li, K. Tobin et al., Microaneurysm detection with radon transform-based classification on retina images, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5939-5942, 2011.
DOI : 10.1109/IEMBS.2011.6091562

E. Grisan and A. Ruggeri, A hierarchical bayesian classification for nonvascular lesions detection in fundus images, EMBEC05, 3rd European Medical and Biological Engineering Conference, 2005.

K. Ram, G. Joshi, and J. Sivaswamy, A Successive Clutter-Rejection-Based Approach for Early Detection of Diabetic Retinopathy, IEEE Transactions on Biomedical Engineering, vol.58, issue.3, pp.664-673, 2011.
DOI : 10.1109/TBME.2010.2096223

B. Antal and A. Hajdu, An Ensemble-Based System for Microaneurysm Detection and Diabetic Retinopathy Grading, IEEE Transactions on Biomedical Engineering, vol.59, issue.6, pp.1720-1726, 2012.
DOI : 10.1109/TBME.2012.2193126

B. Antal, I. Lazar, and A. Hajdu, An optimal voting scheme for microaneurysm candidate extractors using simulated annealing, Signal Processing and Multimedia Applications Proceedings of the 2010 International Conference on, pp.80-87, 2010.

M. Niemeijer, B. Van-ginneken, M. Cree, A. Mizutani, G. Quellec et al., Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.185-195, 2010.
DOI : 10.1109/TMI.2009.2033909

URL : https://hal.archives-ouvertes.fr/hal-00473901

K. M. Adal, S. Ali, D. Sidibé, T. Karnowski, E. Chaum et al., Automated detection of microaneurysms using robust blob descriptors, Medical Imaging 2013: Computer-Aided Diagnosis, 2013.
DOI : 10.1117/12.2007913

URL : https://hal.archives-ouvertes.fr/hal-00784580

T. Lindeberg, Feature detection with automatic scale selection, International Journal of Computer Vision, vol.30, issue.2, pp.79-116, 1998.
DOI : 10.1023/A:1008045108935

T. Lindeberg, Scale-space theory in computer vision, 1993.
DOI : 10.1007/978-1-4757-6465-9

H. Bay, A. Ess, T. Tuytelaars, and L. , Speeded-Up Robust Features (SURF), Computer Vision and Image Understanding, vol.110, issue.3, pp.346-359, 2008.
DOI : 10.1016/j.cviu.2007.09.014

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Blum and T. Mitchell, Combining labeled and unlabeled data with cotraining, Proceedings of the eleventh annual conference on Computational learning theory, pp.92-100, 1998.
DOI : 10.1145/279943.279962

URL : http://axon.cs.byu.edu/~martinez/classes/678/Papers/Mitchell_cotraining.pdf

X. Zhu, Semi-supervised learning literature survey, 2005.

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.1-27, 2011.
DOI : 10.1145/1961189.1961199

T. Kauppi, V. Kalesnykiene, J. Kamarainen, L. Lensu, I. Sorri et al., Di- aretdb1 diabetic retinopathy database and evaluation protocol, Proc. Medical Image Understanding and Analysis (MIUA), pp.61-65, 2007.