Spatio-Temporal Saliency Detection in Dynamic Scenes using Local Binary Patterns
Satya Muddamsetty, Désiré Sidibé, Alain Trémeau, Fabrice Meriaudeau

To cite this version:

HAL Id: hal-00995334
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00995334
Submitted on 23 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—Visual saliency detection is an important step in many computer vision applications, since it reduces further processing steps to regions of interest. Saliency detection in still images is a well-studied topic. However, videos scenes contain more information than static images, and this additional temporal information is an important aspect of human perception. Therefore, it is necessary to include motion information in order to obtain spatio-temporal saliency map for a dynamic scene. In this paper, we introduce a new spatio-temporal saliency detection method for dynamic scenes based on dynamic textures computed with local binary patterns. In particular, we extract local binary patterns descriptors in two orthogonal planes (LBP-TOP) to describe temporal information, and color features are used to represent spatial information. The obtained three maps are finally fused into a spatio-temporal saliency map. The algorithm is evaluated on a dataset with complex dynamic scenes and the results show that our proposed method outperforms state-of-art methods.

I. INTRODUCTION

Visual saliency intuitively characterizes parts of a scene which stand out relative to their neighbouring parts, and indirectly guides viewer’s attention. It is an important and fundamental research problem in neuroscience and psychology to investigate the mechanism of human visual system in selecting regions of interest in complex scenes. It has been an active research topic in computer vision research due to various applications such as object detection [1], image segmentation [2], robotic navigation and localization [3], video surveillance [4], object tracking [5], image re-targeting [6] and image/video compression [7].

According to psychological studies [8], visual attention process follows two basic principles: bottom-up and top-down approaches. Bottom-up approach is a task independent process derived solely from the visual input. Regions which attract attention in a bottom-up way are called salient and the responsible features should be sufficiently discriminative with respect to the surrounding regions. In top-down approaches, the attention is driven by cognitive factors such as knowledge, expectations and current goals. Among these two categories, bottom-up mechanism has been more investigated than top-down mechanism, since data-driven stimuli are easier to control than cognitive factors [8].

Different theories have been proposed to explain and better understand human perception. The feature integration theory (FIT) [9] and the guided search model [10] are the most influential ones. In FIT, the visual information is analyzed in parallel from different feature maps. Based on FIT, Koch and Ullman [11] have proposed the first neurally plausible architecture. In their framework, different feature maps using low level features such as color, intensity, orientation, motion, texture and spatial frequency are computed in parallel and the conspicuity of every pixel in an image are represented in a topographic representation known as saliency map. Most of existing bottom-up approaches follow the same architecture. In the guided search model, the goal is to explain and predict the results of visual search experiments. This model considers top-down process along with bottom-up saliency to distinguish the target from the distractors.

Several methods have been proposed to detect salient regions in images and videos, and a recent survey of state-of-art methods can be found in [12]. However, most of these methods are limited to static images and few attention has been given to videos. Dealing with videos is more complicated than static images and the perception of video is also different from that of static images due to additional temporal information. A video shows a strong spatio-temporal correlation between the regions of consecutive frames. A common approach to deal with video sequences is to compute a static saliency map for each frame and to combine it with a dynamic map to get the final spatio-temporal saliency map. The accuracy of the saliency model depends on the quality of both the static and dynamic saliency maps and also on the fusion method as shown in [13].

Most of the existing spatio-temporal saliency models [4], [14], [13] use optical flow methods to process the motion information. In these methods, motion intensity of each pixel is computed and the final saliency map represents the pixels which are moving against the background. Optical flow based methods can work when the scene studied has simple background and fail with complex background scenes. Real world scenes are composed of several dynamic entities such as moving trees, moving water, snow, rain, fog and crowds. This makes the scene background very complex whereas optical flow based methods cannot compute accurate dynamic saliency maps.

To address these limitations, we propose a new spatio-temporal saliency detection method in this paper. Our method is based on local binary patterns (LBP) for representing the scene as dynamic textures. The dynamic textures are modeled using local binary patterns in orthogonal planes (LBP-TOP) which is an extension of the LBP operator in temporal direction [15]. Our contributions are twofold. First, we apply a center-surround mechanism to the extracted dynamic textures in order to obtain a measure of saliency in different directions. Second, we propose to combine color and texture features from which the spatial saliency map is computed using color.
features meanwhile the temporal saliency map is computed using dynamic textures from LBP in two orthogonal planes. The different saliency maps are finally fused to obtain the final spatio-temporal saliency map.

The rest of the paper is organized as follows. In Section II, we review some of the spatio-temporal saliency detection methods presented in literature. In Section III, we describe the proposed LBP-TOP based spatio-temporal saliency model. Section IV, shows performance evaluation of our methods and comparison with other approaches. Finally, Section V gives concluding remarks.

II. RELATED WORK

In this section, we briefly introduce some of the saliency models described in literature. All these methods follow the bottom-up approach principles. Itti et al. [16] proposed the first biologically inspired saliency model. In their method, the authors used a set of feature maps such as intensity, color and orientation, which are normalized and linearly combined to generate the overall saliency map. Even if this model does not deal with any motion information, it has become a benchmark model for the other models. In [1], authors proposed an information theoretic spatio-temporal saliency model which is computed from spatio-temporal volumes. Marat et al. [14] proposed a space-time saliency algorithm which is inspired by the human visual system. First, a static saliency map is computed using color features, and a dynamic saliency map is computed using motion information derived from optical flow. The two maps are then fused to generate space-time saliency map. In a similar way, Tong et al. [4] proposed a saliency model which is used for video surveillance. The spatial map is computed based on low level features and the dynamic map is computed based on motion intensity, motion orientation and phase.

A phase spectrum approach is proposed by Guo and Zhang [7]. In this method, motion is computed by taking the difference between two frames, and is combined with color and intensity. The features are put together using a quaternion representation and Quaternion Fourier Transform (QFT) is applied to get final saliency map. Kim et al. [17] presented a salient region detection method for both images and videos based on center-surround hypothesis. They used edge and color orientations to compute the spatial saliency. The dynamic saliency is computed by taking the absolute difference between the center and surround temporal gradients and is finally fused with the spatial map. Zhou et al. [18] proposed a dynamic saliency model to detect moving objects against dynamic backgrounds. In this algorithm, the displacement of foreground and background objects are represented by the phase change of Fourier spectra and the saliency map is generated using the displacement vector. In [19], Seo and Milanfar proposed a unified space-time saliency detection in which they compute local regression kernels from the image or video and finally measure the likeness of pixel or (voxel) to its surroundings. Saliency is then detected based on a measure of self-resemblance computed using cosine similarity. A similar method is developed in [20], where the video patches are modeled using dynamic textures and saliency is computed based on discriminant center-surround.

Most of these methods fail to address complex scenes. In particular, methods based on optical flow fail to compute accurate dynamic saliency maps for scenes with highly textured backgrounds.

III. PROPOSED SPATIO-TEMPORAL SALIENCY

In this section, we introduce our proposed spatio-temporal saliency detection method for dynamic scene based on local binary patterns. In particular, we model dynamic textures using local binary patterns computed in orthogonal planes (LBP-TOP) and apply a center-surround mechanism to compute a saliency measure in different directions. Then, we combine the spatial saliency map computed using color features and the temporal saliency map computed using dynamic textures, to obtain the final spatio-temporal saliency map. An overview of the method is presented in Fig. 1, and the different steps are described in the following subsections.

A. Modeling dynamic textures using LBP-TOP

Dynamic or temporal textures are textures that show stationary properties in time. They encompass the different difficulties mentioned in the introduction (Section ??) such as moving trees, moving water, snow, rain, fog, etc. Therefore, we adopt dynamic textures to model the varying appearance of dynamic scenes with time. Several approaches have been developed to represent dynamic textures and a review can be found in [21].

In our work, we use the LBP-TOP approach of Zhao and Pietikäinen [15]. LBP-TOP is an extension of local binary patterns (LBP) that combines both motion and appearance features simultaneously and has been used for applications such as facial expression analysis [15] or human activity recognition [22].

In its simplest form, LBP is a texture operator which labels the pixels of an image by thresholding the neighbourhood of each pixel and considers the result as a binary number [23]. The original LBP operator is based on a circular sampling:

\[
LBP(x_c, y_c) = \sum_{p=1}^{P} s(g_p - g_c) 2^p, \quad s(x) = \begin{cases} 1 & x \geq 0, x < 0, \\
0 & \end{cases}
\]

where \(g_c \) is the gray value of the center pixel \((x_c, y_c)\) and \(g_p \) are the gray values at the \(P \) sampling points in the circular neighbourhood of \((x_c, y_c)\).

The LBP-TOP operator extends LBP to temporal domain by computing the co-occurrences of local binary patterns on three orthogonal planes such as XY, XT and YT. The XT and YT planes provide information about the space-time transitions and the XY plane provides spatial information. These three orthogonal planes intersect at the center pixel. LBP-TOP considers the feature distributions from each separate plane and then concatenates them into a single histogram. The circular neighborhoods are generalized to elliptical sampling to fit to the space-time statistics [15].

B. Spatio-temporal saliency detection using LBP-TOP descriptor

After modeling dynamic textures using LBP-TOP, we compute spatio-temporal saliency using a center-surround (CS)
Given by:

More specifically, the saliency S and h saliency map and YT planes respectively. They are fused into a dynamic

The center region. We then compute the feature distributions

of different fusion techniques [13]. In DWF the weights are

calculated by computing a ratio between the means of both the

of the obtained final spatio-temporal saliency map. In

XY plane. As shown in [13], the fusion method affects the

saliency map is fused with the static saliency map from the

are fused to get a dynamic saliency map. Then, this dynamic

features distribution of the center of visual stimuli is compared

and a surrounding region r with the feature distribution of surrounding stimuli.

Note that we separately apply center-surround mechanism
to each of the three planes XY, XT and YT. Hence, we compute
three different saliency maps based on the three distributions
derived from LBP-TOP.

The final step of the method consists in fusing the previous
three maps into a single spatio-temporal saliency map. This is
done in two steps. First, the two maps containing temporal
information, i.e. the saliency maps from XT and YT planes,
are fused to get a dynamic saliency map. Then, this dynamic
saliency map is fused with the static saliency map from the
XY plane. As shown in [13], the fusion method affects the
quality of the obtained final spatio-temporal saliency map. In this work, we employ the Dynamic Weighted Fusion (DWF)
scheme as it has shown best performance in a recent evaluation
of different fusion techniques [13]. In DWF the weights are

calculated by computing a ratio between the means of both the
maps to combine, so they are updated from frame to frame. Let S_{XT} and S_{YT} be the saliency maps obtained from the XT
and YT planes respectively. They are fused into a dynamic
saliency map M_D as follows:

$$M_D = \alpha_D S_{YT} + (1 - \alpha_D) S_{XT},$$

where $\alpha_D = \frac{\text{mean}(S_{YT})}{\text{mean}(S_{XT}) + \text{mean}(S_{YT})}$.

The obtained dynamic map M_D and the static map $M_S = S_{XY}$ are fused in a similar manner.

C. Combining color and dynamic textures features

We observe that the spatial saliency map derived from the
XY plane fails to highlight salient objects of some scenes
because LBP-TOP does not use color features. Figure 2 shows
examples of saliency maps obtained from LBP-TOP features.
As it can be seen in the second column of Fig. 2, the saliency
map obtained in the XY plane fails to highlights objects of
interest, for example the moving persons in the second row of
the figure.

This observation motivates us to replace the LBP features
computed in XY plane by color features and compute the spatial saliency map following the context-aware method of
Goferman et al. [24] since this saliency detection method was
shown to achieve best performance in a recent evaluation [25].

1) Spatial Saliency: The spatial saliency is computed based
on context aware saliency. In this method the salient regions
should not only contain the prominent objects but also the parts
of the background which convey the context [24]. It is based
on the distinctiveness of a region with respect to both its local
and global surroundings.

In a first step a local single-scale saliency is computed for
each pixel in the image. The dissimilarity measure between a
pair of patches is defined by:

$$d(p_i, q_k) = \frac{d_{\text{color}}(p_i, q_k)}{1 + c d_{\text{position}}(p_i, q_k)},$$

where $d_{\text{color}}(p_i, q_k)$ is the Euclidean distance between image
patches p_i and $\{q_k\}_{k=1}^K$ of patch size 7×7, centered at pixel i and k, where K is the number of the most similar patches (if
the most similar patches are highly different from p_i, then all
image patches are highly different from p_i) in CIELAB color
space. $d_{\text{position}}(p_i, q_k)$ is the Euclidean distance between the
positions of patches p_i and q_k and c is a constant scalar value
set to $c = 3$ in our experiments (changing the value to any
smaller scalar value produces slight change in the saliency

![Image](https://via.placeholder.com/150)
map but the final result is almost identical). The single-scale saliency value of pixel \(i \) at scale \(r \) is then defined as:

\[
S^s_{i} = 1 - e^{-\frac{1}{2} \sum_{j=1}^{K} d(p^r_i, q^r_j)}.
\] (5)

In a second step, a pixel is considered salient if its \(K \) most similar patches \(\{q_k^r\}_{k=1}^K \) at different scales are significantly different from it. The global saliency of a pixel \(i \) is characterized by the mean of its saliency at different scales.

The final step includes the immediate context of the salient object. The visual contextual effect is simulated by extracting the most attended localized areas at each scale. A pixel \(i \) is considered as a focus of attention at scale \(r \) which is normalized to the range \([0, 1]\), if the dissimilarity measure of Eq. 4 exceeds a given threshold \((S^s_{i} > 0.8) \). Then, each pixel which is outside of attended areas is weighted according to its Euclidean distance to the closest focus of attention pixel. The final saliency map which includes the context information is computed as:

\[
\hat{S}_{i} = \frac{1}{M} \sum_{r} s^r_{i} (1 - d^r_{\text{foci}}(i)),
\] (6)

where \(M \) is the total number of scales and \(d^r_{\text{foci}}(i) \) is the Euclidean positional distance between pixel \(i \) and the closest focus of attention pixel at scale \(r \).

2) Temporal Saliency: The temporal saliency map is computed using dynamic textures from LBP-TOP features in the XT and YT planes. The two maps, one for each plane, are fused into a single dynamic saliency map using the DWT fusion scheme explained in Section III-B.

3) Post-processing: After obtaining the spatial and temporal saliency maps, respectively \(M_S \) and \(M_D \), both are fused into the final spatio-temporal saliency map as:

\[
M_{DS} = \alpha M_D + (1-\alpha)M_S,
\] (7)

with \(\alpha = \frac{\text{mean}(M_D)}{\text{mean}(M_D) + \text{mean}(M_S)} \).

The last step of our method consists in applying a post-processing scheme with the goal of suppressing isolated pixels or group of pixels with low saliency values. We start by finding pixels whose saliency value is above a defined threshold (0.5 in our experiments, the final saliency map \(M_{DS} \) being normalized to have values in \([0, 1]\)). Then, we compute the spatial distance \(D(x, y) \) from each pixel to the nearest non-zero pixel in the thresholded map. The spatio-temporal saliency map \(M_F \) is finally refined using the following equation:

\[
M_F(x, y) = e^{-\frac{D(x, y)}{\lambda}} \times M_{DS}(x, y),
\] (8)

where \(\lambda \) is a constant set to \(\lambda = 0.5 \). The influence of this last parameter is studied in the next section showing experimental results.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed saliency detection method using LBP features on a publicly available dataset of dynamic scenes [20]. The dataset contains twelve video sequences with dynamic background scenes such as moving trees, snow, smoke, fog, pedestrians, waves in the sea and moving cameras. For each sequence, a manual segmentation of the salient objects is available for every frame and served as ground truth. This allows us to perform a quantitative analysis of the methods performance.

We compare the proposed spatio-temporal saliency detection method combining color features and LBP-TOP features (PROPOSED), with the method using LBP features only (LBP-TOP) and three state-of-art methods: a method using optical flow to compute motion features (OF) [13], the self-resemblance method (SR) [19] and the phased discrepancy based saliency detection method (PD) [18]. For the last three methods, we use codes provided by the authors. For LBP-TOP based saliency, we use center-surround mechanism described in Section III-B with a center region of size \(17 \times 17 \) and a surround region of size \(97 \times 97 \), and we extract LBP features from a temporal volume of six frames.

We evaluate the different spatio-temporal saliency detection methods by generating Receiver Operating Characteristic (ROC) curves and evaluating the Area Under ROC Curve (AUC). For each method, the obtained spatio-temporal saliency map is first normalized to the range \([0, 1]\), and binarized using a varying threshold \(t \in [0, 1] \). With the binarized maps, we compute the true positive rate and false positive rate with respect to the ground truth data.

The post-processing step described in Section III-C is important in order to obtain good final saliency maps. It basically lower the final saliency value of pixels far away
from all pixels with saliency value above a defined threshold. The parameter λ in Eq. (8) controls the importance of the attenuation. The effect of this parameter can be observed in Fig. 3 for three sequences. As can be seen, optimal values are between 0.2 and 0.6 for the three sequences. We have selected the value $\lambda = 0.5$ as it is in average the best value for all tested sequences.

Table I summarizes the results obtained with all sequences by the different saliency detection methods whereas the visual comparison of these methods are shown in Fig. 7. We can observe that the proposed method achieves the best overall performance with an average AUC value of 0.914 for all twelve sequences. The optical flow based method (OF) achieves an average AUC value of 0.907, whereas as self-resemblance (SR), phase discrepancy (PD) and LBO-TOP achieve lower average AUC values, respectively 0.843, 0.837 and 0.745. These results confirm the observation from Section III-C that the combination of color features with LBP features produces better saliency map. In fact, the proposed method fusing color and LBP features gives an average AUC value which is 22% higher than the value with LBP-TOP features.

Analyzing the sequences individually, we see that the best and least performances are obtained with the Boats and Freeway sequences, respectively, with average AUC values of 0.9394 and 0.7398 for all five saliency detection methods. The Boats sequence shows good color and motion contrasts, so both static and dynamic maps are estimated correctly, and all spatio-temporal saliency detection methods perform well. Note however that the LBP-TOP based method gives slightly lower accuracy than other techniques. On the other hand, the color contrast of the Freeway sequence is very limited. So getting a correct static saliency map is difficult with this sequence whereas the quality of the final spatio-temporal saliency map relies on the dynamic map. The best performing method with this sequence is the LBP-TOP based technique with an average AUC value of 0.868, while optical-flow based technique achieves an average AUC value of only 0.545. This example illustrates that using LBP features to represent dynamic textures (and to compute the dynamic saliency map) gives very good results. The ROC curves comparing performances of the different methods on three sequences are shown in Fig. 4, 5 and 6.

V. CONCLUSION

In this paper, we have proposed a spatio-temporal saliency detection method of dynamic scenes based on local binary patterns. The method combines in a first step color features for static saliency detection, and dynamic textures for temporal dynamic saliency detection. The obtained two saliency maps are in a second step fused into a spatio-temporal map. Experimental results show that our method performs significantly better than using LBP features alone, and also better than other state-of-art methods. The proposed method is in particular, able to deal with complex dynamic scenes showing difficult background textures.

REFERENCES

Table I. Evaluation of Spatio-Temporal Saliency Detection Methods. PROPOSED (with Color and LBP Features), LBP-TOP (LBP Features Only), OF (Optical Flow Based), SR (Self-Resemblance) and PD (Phase Discrepancy).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird</td>
<td>0.9586</td>
<td>0.7680</td>
<td>0.9664</td>
<td>0.9739</td>
<td>0.8221</td>
<td>0.8936</td>
</tr>
<tr>
<td>Boats</td>
<td>0.9794</td>
<td>0.8358</td>
<td>0.9827</td>
<td>0.9227</td>
<td>0.9765</td>
<td>0.9394</td>
</tr>
<tr>
<td>Holle</td>
<td>0.9953</td>
<td>0.9413</td>
<td>0.9877</td>
<td>0.9961</td>
<td>0.8285</td>
<td>0.9279</td>
</tr>
<tr>
<td>Cyclists</td>
<td>0.9371</td>
<td>0.9427</td>
<td>0.9850</td>
<td>0.7427</td>
<td>0.6490</td>
<td>0.8582</td>
</tr>
<tr>
<td>Chopper</td>
<td>0.7775</td>
<td>0.8684</td>
<td>0.5456</td>
<td>0.7660</td>
<td>0.7318</td>
<td>0.7598</td>
</tr>
<tr>
<td>Pods</td>
<td>0.9552</td>
<td>0.7376</td>
<td>0.9512</td>
<td>0.8603</td>
<td>0.8548</td>
<td>0.8718</td>
</tr>
<tr>
<td>Ocean</td>
<td>0.9271</td>
<td>0.8513</td>
<td>0.7810</td>
<td>0.8016</td>
<td>0.8235</td>
<td>0.8509</td>
</tr>
<tr>
<td>Surfers</td>
<td>0.9364</td>
<td>0.7859</td>
<td>0.9285</td>
<td>0.9255</td>
<td>0.9329</td>
<td>0.9303</td>
</tr>
<tr>
<td>Sking</td>
<td>0.8389</td>
<td>0.3787</td>
<td>0.9796</td>
<td>0.8872</td>
<td>0.9367</td>
<td>0.8042</td>
</tr>
<tr>
<td>Jump</td>
<td>0.8927</td>
<td>0.6960</td>
<td>0.9481</td>
<td>0.8321</td>
<td>0.6616</td>
<td>0.8067</td>
</tr>
<tr>
<td>Traffic</td>
<td>0.1993</td>
<td>0.6388</td>
<td>0.9615</td>
<td>0.5491</td>
<td>0.8120</td>
<td>0.7521</td>
</tr>
<tr>
<td>Avg AUC</td>
<td>0.9140</td>
<td>0.7453</td>
<td>0.9079</td>
<td>0.8434</td>
<td>0.8371</td>
<td>0.8371</td>
</tr>
</tbody>
</table>

Fig. 7. Visual comparison of spatio-temporal saliency detection of our methods and state of art methods. (a) Original frame; (b) PROPOSED; (c) LBP-TOP; (d) OF [13]; (e) SR [19] and (f) PD [18]