Human interaction recognition based on the co-occurrence of visual words

K. Nour El Houda Slimani, Yannick Benezeth, Feriel Souami

To cite this version:

K. Nour El Houda Slimani, Yannick Benezeth, Feriel Souami. Human interaction recognition based on the co-occurrence of visual words. IEEE CVPR CMSI workshop, Jun 2014, United States. pp.455-460. hal-01018752

HAL Id: hal-01018752
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01018752
Submitted on 4 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Human interaction recognition based on the co-occurrence of visual words

K. Nour el houda SLIMANI† Yannick BENEZETH†† Feriel SOUAMI†

† USTHB, LRIA Laboratory
BP 32 El Alia Bab Ezzouar,
Algers 16111, Algeria
[nslimani;fsouami]@usthb.dz

†† Université de Bourgogne
LE2I, UMR CNRS 6306
21000 Dijon cedex France
yannick.benezeth@u-bourgogne.fr

Abstract

This paper describes a novel methodology for automated recognition of high-level activities. A key aspect of our framework relies on the concept of co-occurring visual words for describing interactions between several persons. Motivated by the numerous success of human activity recognition methods using bag-of-words, this paradigm is extended. A 3-D XYT spatio-temporal volume is generated for each interacting person and a set of visual words is extracted to represent his activity. The interaction is then represented by the frequency of co-occurring visual words between persons. For our experiments, we used the UT-interaction dataset which contains several complex human-human interactions.

1. Introduction

Over the past several years, human activity recognition has attracted the attention of the computer vision community. Understanding actions in videos is a problem that has been studied extensively and successful results have been obtained for the recognition of quite simple actions [20]. On the other hand, the recognition of more complex actions that may involve several persons is still an active research topic.

The method proposed in this paper is inspired by the bag-of-words paradigm which is one of the most popular method in the field of textual information retrieval and object recognition in images. Various methodologies based on this paradigm have been developed for activity recognition in videos, e.g. in [12, 16, 6, 13]. The action recognition is achieved using an unordered set of spatio-temporal features, called visual words. Such features capture local motion events in video. These visual words are usually combined with a state of the art machine learning techniques such as a Boosting or Support Vector Machines classifiers to recognize human actions.

Encoding the spatio-temporal structure of visual words is of great importance for the recognition of human interaction over video sequences. Complex actions, such as interactions between individuals, are composed of a set of temporally ordered elementary actions performed by the different persons involved in the interaction. The temporal sequence is not considered in the original bag-of-words paradigm. To cope with this limitation, we present a spatio-temporal representation for interaction recognition based on the co-occurrence of visual words. The co-occurrence matrix is a non parametric model for pair-wise feature distribution and is used to effectively model the frequency of co-occurrence of visual words.

An overview of the proposed methodology is presented in figure 1. A 3-D spatio-temporal volume is generated for each interacting person and a set of visual words is extracted to represent his activity. The interaction between persons is then represented by the frequency of co-occurring visual words, i.e. the number of times visual words occur simultaneously for each person involved in the interaction.

The paper is organized as follow. First, related works are presented in section 2, then the human interaction representation is described in section 3 followed by experimental results in section 4.
2. Related work

Much of the early work in action recognition was tested on relatively simple single person uniform background sequence. Most datasets for human action recognition, such as the KTH [20] or the Weizmann [3] datasets, provide samples for only a few action classes recorded in controlled and simplified settings. Recently, more complex datasets have been proposed with realistic video samples, such as the Hollywood dataset [10] or more complex actions and interactions such as the UT-interaction dataset [18].

There are several existing surveys within the area of high-level human activity recognition [22, 15, 4, 1]. We present in this section the most common techniques.

Local features are a popular way for representing actions in videos. They achieve state-of-the-art results for action classification when combined with a bag-of-words representation [21]. However, by exploiting correlations in space and time between these local features, actions can be modeled more effectively. Unlike the approaches following the bag-of-words paradigm, some approaches attempt to model spatio-temporal distribution of the local features for better recognition of actions [1, 5, 24, 9, 7, 14, 23]. Savarese et al. [19] proposed a methodology to capture spatio-temporal proximity information among local features. For each action video, they measured co-occurrence patterns in a local 3-D region. Liu and Shah [11] also considered correlations among local features.

Laptev et al. [10] constructed spatio-temporal histograms by dividing an entire space-time volume into several grids. The method roughly measures how local descriptors are distributed in the 3-D XYT space by analyzing which feature falls into which cell of the grid.

Ryoo and Aggarwal [17] introduced the spatio-temporal relationship match, called STR match, which explicitly considers spatial and temporal relationships among local features. Their method measures structural similarity between two videos by computing pairwise spatio-temporal relations among local features. Their system not only classified simple actions (i.e. those from the KTH dataset), but also recognized interaction-level activities (e.g. hand-shaking and pushing) from continuous videos.

In this paper, we are also interested in exploiting correlations in space and time between local features. We propose a non-parametric representation for pairwise feature distribution to explicitly consider the simultaneous occurrence of visual words between the persons involved in an interaction. The interaction representation is based on the frequency of co-occurring visual words between persons.

3. Human interaction representation

In this section, we introduce the proposed representation of human interactions. An overview of our
approach is described in figure 1. First, a 3-D XYT spatio-temporal volume is extracted for each interacting person and the framework of bag-of-words is used to characterize the activity. Then, as we are interested in the recognition of complex activities involving at least two persons, we use the frequency of co-occurring visual words to get a compact representation of the activity. Interactions that we recognize in this paper do not involve more than two persons, but it may be noted that our method can be easily generalized to interactions involving more than two persons.

3.1. Low-level action representation

The first step of the proposed approach is to detect and segment the persons in the video in order to create a 3-D XYT spatio-temporal volume for each of these persons. The activity of each person is then characterized with a set of local features extracted from this 3D volume. It may be noted that it is possible to use any local features suitable for spatio-temporal volumes such as 3D-SIFT [21], 3D-HOG [8] or 3D-LBP [25] to name a few. In order to decrease the sensitivity of our method to tracking errors, we have decided to manually extract the location of each person in the video. We have also chose to use the 3D-SIFT features [21].

Once local features are extracted for all videos, we cluster them into multiple visual words using k-means algorithm in order to define a visual codebook. Visual-words are then defined by the centroids of the clusters.

Thus, each spatio-temporal volume \(V \) is defined by a set of visual-word tuples:

\[
V = \{ \langle x_0, y_0, t_0, w_0 \rangle, \ldots, \langle x_n, y_n, t_n, w_n \rangle \}, \quad (1)
\]

where each tuple \(\langle x_i, y_i, t_i, w_i \rangle \) represents respectively the spatial position, the time and the word index of the \(i \)th interest point. \(n \) denotes the volume’s total number of interest points. \(w_i \in \{1, \ldots, k\} \) with \(k \) the number of visual words.

In the original bag-of-words paradigm, the video sequence is represented as a histogram of visual-words frequencies. The easiest way to handle cases where there are several persons in the video is to merge the visual words from the different persons and to build a single histogram of visual-word frequencies. This method is called BoW in the experimental results section 4. In the following, we introduce the concept of visual-words co-occurrence to describe the multi-person actions.

3.2. Multi-person action representation

To simplify notations in the following paragraphs, we will consider that there are only two interacting persons in the video. Consequently, the video is composed of only two spatio temporal volumes \(V^{(1)} \) and \(V^{(2)} \).

Let \(\vartheta^{(p)}_i \) be the \(i \)th visual-word tuple of the \(p \)th volume \(\langle x^{(p)}_i, y^{(p)}_i, t^{(p)}_i, w^{(p)}_i \rangle \) with \(p \in \{1, 2\} \). We consider that \(\vartheta_i^{(1)} \) and \(\vartheta_j^{(2)} \) co-occur whenever \(|t^{(1)}_i - t^{(2)}_j| < \tau \). The visual-word co-occurrence matrix \(C \) is defined with

\[
C_{i,j} = \frac{1}{M} \sum_{t=0}^{T-1} \delta(\vartheta^{(1)}_i, \vartheta^{(2)}_j) \quad (2)
\]

where \(\delta(\vartheta^{(1)}_i, \vartheta^{(2)}_j) = 1 \) if \(\vartheta_i^{(1)} \) and \(\vartheta_j^{(2)} \) co-occur and 0 otherwise, \(M \) is a normalization term and \(T \) the number of frames in the volumes. A visual-word co-occurrence matrix example is presented in figure 2.

![Figure 2](example_image.png)

Figure 2. Example of visual-word co-occurrence matrix extracted from two spatio-temporal volumes (V1 and V2).

Note that we later modify the co-occurrence matrix in order to be robust to the relative position of the persons. We use \(C'_{i,j} = C_{i,j} + C_{j,i} \) and we finally keep the
upper triangular part of the matrix C' matrix for representing the interaction. These features can later be used for classification using regular machine learning classifiers.

Interactions that we recognize in this paper come from the *UT-interaction* dataset and do not involve more than two persons. But it may be noted that our method can be easily generalized to interactions involving more than two persons. If the video is composed of m volumes, with $m > 2$, it is possible to consider a m-dimensional co-occurrence matrix C where each element of the matrix represent the co-occurrence of m visual words from the m volumes.

4. Experimental results

This section is committed to assess the performance of our framework and to present the preliminary results regarding the recognition of high level human interactions. The experiments were carried out using the *UT-interaction* dataset [18] which contains videos recorded under a realistic surveillance environment. The *UT-interaction* dataset contains six classes of human-human interactions: *shake-hands*, *point*, *hug*, *kick*, *punch* and *push*. Illustrations of these interactions are presented in figure 3.

![Figure 3. Examples of interactions in the UT-Interaction dataset.](image)

The dataset is composed of 20 video sequences divided into two sets. The set #1 is composed of 10 video sequences taken on a parking lot with slightly different zoom rate, and their backgrounds are mostly static with little camera jitter. Whereas the set #2 (i.e. the other 10 sequences) are taken on a lawn in a windy day. Background is moving slightly (e.g. with trees shaken by the wind), and these videos contain more camera jitters. These 120 video segments representing six occurrences of interaction’s class are proposed from the 20 sequences and are used for the classification evaluation.

Similarly to [12], we temporally extract key frames from the original video’s middle one third frames with five frames as the sampling interval. As explained above, in order to decrease the sensitivity of our method to tracking errors, we have decided to manually extract the location of each person in the video. We have also chose to train our human interaction classifiers using the 3D-SIFT features [21] as described above. The experiments conducted shows that the selection of the number of visual words is critical. Using a bigger number of visual words does not bring better performance because of the size of the feature vector. Therefore, the use of dimension reduction techniques, such as PCA, should be of a great importance because it would allow the use of a more descriptive vocabulary. In the following, we use 150 visual words in the vocabulary and the threshold τ is set to 1 for defining the co-occurrences. It can be noted that any state of the art classifier can be used with our interaction representation. In our experiments, for Set 1, we use a simple locally weighted learning with k-nearest neighbor classifier and Euclidean Distance as distance function.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Set 1</th>
<th>Set 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoW</td>
<td>58.20</td>
<td>48.30</td>
</tr>
<tr>
<td>Our method</td>
<td>40.63</td>
<td>66.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>Per clip activity classification performance measured as ROC Area (in %) on the UT-Interaction Dataset obtained for the Set 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shake</td>
<td>Hug</td>
</tr>
<tr>
<td>ROC A.</td>
<td>0.724</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2.</th>
<th>Per clip activity classification performance measured as ROC Area (in %) on the UT-Interaction Dataset obtained for the Set 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shake</td>
<td>Hug</td>
</tr>
<tr>
<td>ROC A.</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3.</th>
<th>Comparison of our method with the regular BoW approach. Average accuracies on the UT-Interaction Dataset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Set 1</td>
</tr>
<tr>
<td>BoW</td>
<td>58.20</td>
</tr>
<tr>
<td>Our method</td>
<td>40.63</td>
</tr>
</tbody>
</table>
Table 4. Confusion matrices of per-clip classification result on UT-Interaction dataset. Horizontal rows are ground truth and vertical columns are predictions.

For the Set 2, we use a SVM classifier with a polynomial kernel. Furthermore, we use a 5-fold cross-validation experimental setting to evaluate our method. It is noteworthy that in our experiment, we have used 32 instances (32 from 60 videos) and we have omitted the class Point because it can be considered as an action and not an interaction.

We present in tables 1 and 2 the results obtained for the sets 1 and 2 of the UT-Interaction dataset. We present the per clip activity classification performance as ROC Area (in %). More detailed results are presented in table 4. Confusion matrices of both the two sets in the UT-Interaction datasets are shown for our method. It is possible to observe some confusion between the activities push, punch and kick on set 2 as those interactions are slightly similar in both appearance and motion.

Then, we present in table 3 a comparison of our method with the regular Bag-of-words (BoW) approach. For this method we have extracted 3D SIFT features for each person’s volume involved in a given interaction and then we have merged the two histograms into a single histogram of visual words to define an interaction. The results in table 3 are presented in terms of average accuracies. It is possible to observe that our method performs better on the Set 2 but not on the Set 1. These encouraging results suggest that a more appropriate management of the size of our descriptors should allow to use a more descriptive vocabulary and thus further improve the results.

5. Conclusion

We have presented in this paper a representation of actions with several persons based on the concept of co-occurrence of visual words for describing interactions. The paradigm of bag-of-words for action recognition is extended and the multi-person actions are then represented by the frequency of co-occurring visual words, i.e. the number of times visual words occur simultaneously between the persons involved in the interaction. We have presented experimental results on the UT-interaction dataset using the 3-D SIFT local features and a SVM classification. In the future, we plan to evaluate more deeply the robustness of the proposed method to the various parameters, to experiment the extension to videos with more than two persons.

References

