Automatic spatial and temporal organization of long range video sequences from low level motion features

Abstract : In this paper, we address the analysis of activities from long range video sequences. We present a method to automatically extract spatial and temporal structure from a video sequence from low level motion features. The scene layout is first extracted, with a set of regions that have homogeneous activities called Motion Patterns. These regions are then analyzed and the recurrent temporal motifs are extracted for each Motion Patterns. Preliminary results show that our method can accurately extract important temporal motifs from video surveillance sequences.
Type de document :
Communication dans un congrès
IEEE CVPR Scene Understanding Workshop, Jun 2014, United States. 2 p., 2014
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01018756
Contributeur : Yannick Benezeth <>
Soumis le : vendredi 4 juillet 2014 - 22:13:00
Dernière modification le : lundi 7 juillet 2014 - 08:48:06
Document(s) archivé(s) le : samedi 4 octobre 2014 - 13:06:10

Fichier

CVPR_2014_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01018756, version 1

Collections

Citation

Alberto Quintero Delgado, Yannick Benezeth, Désiré Sidibé. Automatic spatial and temporal organization of long range video sequences from low level motion features. IEEE CVPR Scene Understanding Workshop, Jun 2014, United States. 2 p., 2014. <hal-01018756>

Partager

Métriques

Consultations de
la notice

135

Téléchargements du document

234