R. A. Berner, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2, Geochimica et Cosmochimica Acta, vol.70, issue.23, pp.5653-5664, 2006.
DOI : 10.1016/j.gca.2005.11.032

R. A. Berner and Z. Kothavala, GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, American Journal of Science, vol.301, issue.2, pp.182-204, 2001.
DOI : 10.2475/ajs.301.2.182

R. C. Blakey, Carboniferous-Permian paleogeography of the assembly of Pangea, in: Fifteenth International Congress on Carboniferous and Permian Stratigraphy, Royal Netherlands Academy of Arts and Sciences, pp.443-465, 2007.

P. Braconnot, S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-delmotte et al., Evaluation of climate models using palaeoclimatic data, Nature Climate Change, vol.241, issue.6, pp.417-42410, 1038.
DOI : 10.1029/2009EO160004

P. J. Brenchley, J. D. Marshall, G. Carden, D. Robertson, D. Long et al., Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period, 022<0295:BAIEFA>2.3.CO, pp.295-298, 1994.
DOI : 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2

M. I. Budyko, The effect of solar radiation variations on the climate of the Earth, Tellus, pp.611-619, 1969.

L. R. Cocks and T. H. Torsvik, Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic, Earth-Science Reviews, vol.82, issue.1-2, pp.29-74, 2007.
DOI : 10.1016/j.earscirev.2007.02.001

T. J. Crowley and S. K. Baum, levels, Journal of Geophysical Research, vol.26, issue.D12, pp.22597-2261010, 1991.
DOI : 10.1029/91JD02449

T. J. Crowley and S. K. Baum, Modeling late Paleozoic glaciation, Geology, vol.20, issue.6, pp.507-510, 1992.
DOI : 10.1130/0091-7613(1992)020<0507:MLPG>2.3.CO;2

T. J. Crowley and S. K. Baum, levels, Journal of Geophysical Research: Atmospheres, vol.355, issue.D1, pp.1093-110110, 1995.
DOI : 10.1029/94JD02521

T. J. Crowley, S. K. Baum, K. , and K. Y. , General circulation model sensitivity experiments with pole-centered supercontinents, Journal of Geophysical Research: Atmospheres, vol.117, issue.A, pp.8793-880010, 1993.
DOI : 10.1029/93JD00122

M. Denis, J. Buoncristiani, M. Konate, J. Ghienne, and M. Guiraud, Hirnantian glacial and deglacial record in SW Djado Basin, NE Niger), vol.20, pp.177-195, 2007.
DOI : 10.3166/ga.20.177-195

URL : https://hal.archives-ouvertes.fr/hal-00169152

G. Dera and Y. Donnadieu, Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event, Paleoceanography, vol.366, issue.4, pp.10-1029, 2012.
DOI : 10.1029/2012PA002283

E. Díaz-martínez and Y. Grahn, Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia and northern Argentina): Palaeogeographic and geodynamic setting, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.245, issue.1-2, pp.62-81, 2007.
DOI : 10.1016/j.palaeo.2006.02.018

Y. Donnadieu, Y. Goddéris, and N. Bouttes, Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO 2 and climate history, Clim. Past, vol.55194, pp.85-9610, 2009.

A. S. Endal and S. Sofia, Rotation in solar-type stars. I - Evolutionary models for the spin-down of the sun, The Astrophysical Journal, vol.243, pp.625-64010, 1981.
DOI : 10.1086/158628

D. Ferreira, J. Marshall, R. , and B. , Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model, Journal of Climate, vol.24, issue.4, pp.992-1012, 2011.
DOI : 10.1175/2010JCLI3580.1

S. Finnegan, K. Bergmann, J. M. Eiler, D. S. Jones, D. A. Fike et al., The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation, Science, vol.363, issue.2, pp.903-906, 2011.
DOI : 10.1130/G21219.1

E. Garnier, B. Barnier, L. Siefridt, and K. Béranger, Investigating the 15 years air-sea flux climatology from the ECMWF re-analysis project as a surface boundary condition for ocean models, 14<1653::AID-JOC575>3.0.CO;2-G, pp.1653-167310, 2000.
DOI : 10.1002/1097-0088(20001130)20:14<1653::AID-JOC575>3.0.CO;2-G

J. Ghienne, D. Le-heron, J. Moreau, M. Denis, M. Deynoux et al., The Late Ordovician Glacial Sedimentary System of the North Gondwana Platform, International Association of Sedimentologists, vol.39, pp.295-319, 2007.
DOI : 10.1002/9781444304435.ch17

URL : https://hal.archives-ouvertes.fr/hal-00232610

M. T. Gibbs, E. J. Barron, and L. R. Kump, An atmospheric pCO 2 threshold for glaciation in the Late Ordovician, 025<0447:AAPCTF>2.3.CO, pp.447-4500091, 1130.

J. Golonka and A. Gaweda, Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic, Tectonics ? Recent advances, pp.261-282, 2012.
DOI : 10.5772/50009

D. O. Gough, Solar interior structure and luminosity variations, Solar Physics, vol.66, issue.1, pp.21-34, 1981.
DOI : 10.1007/BF00151270

A. D. Herrmann, M. E. Patzkowsky, and D. Pollard, Obliquity forcing with 8?12 times preindustrial levels of atmospheric pCO 2 during the Late Ordovician glaciation, Geology, vol.312, pp.485-488, 2003.

A. D. Herrmann, B. J. Haupt, M. E. Patzkowsky, D. Seidov, and R. L. Slingerland, Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.210, issue.2-4, pp.385-401, 2004.
DOI : 10.1016/j.palaeo.2004.02.034

A. D. Herrmann, M. E. Patzkowsky, and D. Pollard, The impact of paleogeography, pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician, International Commission on Stratigraphy: International Chronostratigraphic Chart v2014/02, available at: www.stratigraphy.org, pp.59-74, 2004.
DOI : 10.1016/j.palaeo.2003.12.019

T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. K. Allen et al., The physical science basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC: Climate Change 2013, 1535.

R. L. Jacob, Low frequency variability in a simulated atmosphere ocean system, 1997.

M. Kageyama, U. Merkel, B. Otto-bliesner, M. Prange, A. Abe-ouchi et al., Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study, Clim. Past, vol.95194, pp.935-95310, 2013.

J. T. Kiehl, J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson et al., The National Center for Atmospheric Research Community Climate Model: CCM3*, Journal of Climate, vol.11, issue.6, pp.1131-1149, 1998.
DOI : 10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2

L. R. Kump, M. A. Arthur, M. E. Patzkowsky, M. T. Gibbs, D. S. Pinkus et al., A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.152, issue.1-2, pp.173-18710, 1999.
DOI : 10.1016/S0031-0182(99)00046-2

V. Lefebvre, Y. Donnadieu, P. Sepulchre, D. Swingedouw, and Z. Zhang, Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current, Paleoceanography, vol.3, issue.5, pp.10-1029, 2012.
DOI : 10.1126/science.1059412

T. M. Lenton, M. Crouch, M. Johnson, N. Pires, and L. Dolan, First plants cooled the Ordovician, Nature Geoscience, vol.466, issue.2, pp.86-8910, 1038.
DOI : 10.1146/annurev.earth.29.1.331

A. Loi, J. Ghienne, M. P. Dabard, F. Paris, A. Botquelen et al., The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section (Anti-Atlas, Southern Morocco), Palaeogeography, Palaeoclimatology, Palaeoecology, vol.296, issue.3-4, pp.332-358, 2010.
DOI : 10.1016/j.palaeo.2010.01.018

URL : https://hal.archives-ouvertes.fr/insu-00563940

E. N. Lorenz, Climatic Determinism, Meteor. Mon, vol.17, issue.21, pp.1-3, 1968.
DOI : 10.1111/j.2153-3490.1965.tb01424.x

O. Marti, P. Braconnot, J. L. Dufresne, J. Bellier, R. Benshila et al., Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution, Climate Dynamics, vol.78, issue.11, pp.1-2610, 1007.
DOI : 10.1007/s00382-009-0640-6

URL : https://hal.archives-ouvertes.fr/insu-00498320

E. Nardin, Y. Goddéris, Y. Donnadieu, L. Hir, G. Blakey et al., Modeling the early Paleozoic long-term climatic trend, Modeling the early Paleozoic longterm climatic trend, pp.1181-1192, 2011.
DOI : 10.1130/B30364.1

URL : https://hal.archives-ouvertes.fr/hal-00584566

G. R. North, R. F. Cahalan, C. , and J. A. , Energy balance climate models, Reviews of Geophysics, vol.207, issue.1, pp.91-12110, 1981.
DOI : 10.1029/RG019i001p00091

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.451.9474

R. D. Pancost, K. H. Freeman, A. D. Herrmann, M. E. Patzkowsky, L. Ainsaar et al., Reconstructing Late Ordovician carbon cycle variations, Geochimica et Cosmochimica Acta, vol.105, pp.433-454, 2013.
DOI : 10.1016/j.gca.2012.11.033

D. Pollard, A retrospective look at coupled ice sheet ? climate modeling , Climate Change, pp.173-194, 2010.
DOI : 10.1007/s10584-010-9830-9

C. J. Poulsen and R. L. Jacob, Factors that inhibit snowball Earth simulation, Paleoceanography, vol.43, issue.11, pp.10-1029, 2004.
DOI : 10.1029/2004PA001056

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.494.2507

P. F. Poussart, A. J. Weaver, and C. R. Barnes, : A coupled model analysis, Paleoceanography, vol.355, issue.9, pp.542-55810, 1999.
DOI : 10.1029/1999PA900021

B. E. Rose and J. Marshall, Ocean Heat Transport, Sea Ice, and Multiple Climate States: Insights from Energy Balance Models, Journal of the Atmospheric Sciences, vol.66, issue.9
DOI : 10.1175/2009JAS3039.1

C. V. Rubinstein, P. Gerrienne, G. S. De-la-puente, R. A. Astini, and P. Steemans, Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana), New Phytologist, vol.425, issue.2, pp.365-369, 2010.
DOI : 10.1111/j.1469-8137.2010.03433.x

M. R. Saltzman and S. A. Young, Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia, Geology, vol.33, issue.2, pp.109-11210, 1130.
DOI : 10.1130/G21219.1

C. R. Scotese and W. S. Mckerrow, Ordovician plate tectonic reconstructions , in: Advances in Ordovician geology, pp.90-99, 1991.
DOI : 10.4095/132195

W. D. Sellers, A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System, Journal of Applied Meteorology, vol.8, issue.3, pp.392-400, 1969.
DOI : 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2

S. Jr and A. J. , A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr, vol.62, pp.379-389, 1976.

T. Servais, A. W. Owen, D. A. Harper, B. Kröger, and A. Munnecke, The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.294, issue.3-4, pp.99-119, 2010.
DOI : 10.1016/j.palaeo.2010.05.031

P. M. Sheehan, The Late Ordovician Mass Extinction, Annual Review of Earth and Planetary Sciences, vol.29, issue.1, pp.331-364, 2001.
DOI : 10.1146/annurev.earth.29.1.331

N. Spjeldnaes, Ordovician climatic zones, Norsk Geol. Tidsskr, vol.41, pp.45-77, 1962.

P. Steemans, L. Herissé, A. Melvin, J. Miller, M. A. Paris et al., Origin and Radiation of the Earliest Vascular Land Plants, Science, vol.113, issue.1-3, pp.353-35310, 2009.
DOI : 10.1016/S0034-6667(00)00059-2

URL : https://hal.archives-ouvertes.fr/insu-00381794

H. Stommel, Thermohaline convection with two stable regimes of flow, Tellus, pp.224-230, 1961.

O. E. Sutcliffe, J. A. Dowdeswell, R. J. Whittington, J. N. Theron, C. et al., Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit, 28<967:CTLOGA>2.0.CO, pp.967-97010, 2000.
DOI : 10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2

T. H. Torsvik and L. R. Cocks, New global palaeogeographical reconstructions for the Early Palaeozoic and their generation, in: Early Palaeozoic biogeography and palaeogeography, pp.5-24, 2013.

J. A. Trotter, I. S. Williams, C. R. Barnes, C. Lécuyer, and R. S. Nicoll, Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry, Science, vol.33, issue.2, pp.550-554, 2008.
DOI : 10.1130/G21219.1

URL : https://hal.archives-ouvertes.fr/hal-00336310

B. R. Turner, H. A. Armstrong, C. R. Wilson, and I. M. Makhlouf, High frequency eustatic sea-level changes during the Middle to early Late Ordovician of southern Jordan: Indirect evidence for a Darriwilian Ice Age in Gondwana, Sedimentary Geology, vol.251, issue.252, pp.34-48, 2012.
DOI : 10.1016/j.sedgeo.2012.01.002

T. R. Vandenbroucke, H. A. Armstrong, M. Williams, F. Paris, J. A. Zalasiewicz et al., Polar front shift and atmospheric CO 2 during the glacial maximum of the Early Pawww .clim-past, Clim. Past, vol.10, issue.10, pp.2053-2066, 2014.

C. J. Yapp and H. Poths, Ancient atmospheric C02 pressures inferred from natural goethites, Nature, vol.355, issue.6358, pp.342-344, 1992.
DOI : 10.1038/355342a0

G. M. Young, W. Minter, T. , and J. N. , Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.214, issue.4, pp.323-345, 2004.
DOI : 10.1016/S0031-0182(04)00399-2

S. A. Young, M. R. Saltzman, K. A. Foland, J. S. Linder, and L. R. Kump, A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate?, Geology, vol.37, issue.10, pp.951-95410, 1130.
DOI : 10.1130/G30152A.1

Z. Zhang, Q. Yan, W. , and H. , Has the Drake passage played an essential role in the Cenozoic cooling?