M. L. Giger, H. P. Chan, and J. Boone, and AAPM, Medical Physics, vol.31, issue.1, pp.5799-5820, 2008.
DOI : 10.1056/NEJMoa066099

T. Hambrock, P. C. Vos, C. A. Hulsbergen-van-de-kaa, J. O. Barentsz, and H. J. Huisman, Prostate Cancer: Computer-aided Diagnosis with Multiparametric 3-T MR Imaging???Effect on Observer Performance, Radiology, vol.266, issue.2, pp.521-530, 2013.
DOI : 10.1148/radiol.12111634

S. Newman and . Sanjay, Improvement of radiologists' characterization of mammographic masses by using computeraided diagnosis: an ROC study, Radiology, vol.212, issue.3, pp.817-827, 1999.

J. C. Dean and C. C. Ilvento, Improved Cancer Detection Using Computer-Aided Detection with Diagnostic and Screening Mammography: Prospective Study of 104 Cancers, American Journal of Roentgenology, vol.187, issue.1, pp.20-28, 2006.
DOI : 10.2214/AJR.05.0111

F. Li, M. Aoyama, J. Shiraishi, H. Abe, Q. Li et al., Radiologists' Performance for Differentiating Benign from Malignant Lung Nodules on High-Resolution CT Using Computer-Estimated Likelihood of Malignancy, American Journal of Roentgenology, vol.183, issue.5, pp.1209-1215, 2004.
DOI : 10.2214/ajr.183.5.1831209

N. Petrick, M. Haider, R. M. Summers, S. C. Yeshwant, L. Brown et al., CT Colonography with Computer-aided Detection as a Second Reader: Observer Performance Study, Radiology, vol.246, issue.1, pp.148-156, 2008.
DOI : 10.1148/radiol.2453062161

J. V. Hegde, R. V. Mulkern, L. P. Panych, F. M. Fennessy, A. Fedorov et al., Multiparametric MRI of prostate cancer: An update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer, Journal of Magnetic Resonance Imaging, vol.52, issue.5, pp.1035-1054, 2013.
DOI : 10.1002/jmri.23860

H. Hricak, R. D. Williams, D. B. Spring, K. L. Moon, M. W. Hedgcock et al., Anatomy and pathology of the male pelvis by magnetic resonance imaging, American Journal of Roentgenology, vol.141, issue.6, pp.1101-1110, 1983.
DOI : 10.2214/ajr.141.6.1101

R. A. Huch-boni, J. A. Boner, U. M. Lutolf, F. Trinkler, D. M. Pestalozzi et al., Contrast-Enhanced Endorectal Coil MRI in Local Staging of Prostate Carcinoma, Journal of Computer Assisted Tomography, vol.19, issue.2, pp.232-237, 1995.
DOI : 10.1097/00004728-199503000-00013

J. Kurhanewicz, D. B. Vigneron, H. Hricak, P. Narayan, P. Carroll et al., Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution., Radiology, vol.198, issue.3, pp.795-805, 1996.
DOI : 10.1148/radiology.198.3.8628874

J. Scheidler, R. Petsch, U. Muller-lisse, A. Heuck, and M. Reiser, Echo-planar diffusion-weighted MR imaging of the prostate, Proceedings of the 7th Annual Meeting of ISMRM Philadelphia, p.1103, 1999.

M. G. Swanson, D. B. Vigneron, T. K. Tran, N. Sailasuta, R. E. Hurd et al., Single-voxel oversampled J-resolved spectroscopy of in vivo human prostate tissue, Magnetic Resonance in Medicine, vol.41, issue.6, pp.973-980, 2001.
DOI : 10.1002/mrm.1130

I. Chan, W. Wells, R. V. Mulkern, S. Haker, J. Zhang et al., Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier, Medical Physics, vol.21, issue.9, pp.2390-2398, 2003.
DOI : 10.1118/1.1593633

S. Wang, K. Burtt, B. Turkbey, P. Choyke, and R. Summers, Computer Aided-Diagnosis of Prostate Cancer on Multiparametric MRI: A Technical Review of Current Research, BioMed Research International, vol.360, issue.13
DOI : 10.1109/TIP.2013.2295759

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008, International Journal of Cancer, vol.8, issue.19, pp.2893-2917, 2008.
DOI : 10.1002/ijc.25516

R. Siegel, D. Naishadham, and A. , Cancer statistics, 2013, CA: A Cancer Journal for Clinicians, vol.287, issue.suppl 5, pp.11-30, 2013.
DOI : 10.3322/caac.21166

E. Giovannucci, Y. Liu, E. A. Platz, M. J. Stampfer, and W. C. Willett, Risk factors for prostate cancer incidence and progression in the health professionals follow-up study, International Journal of Cancer, vol.15, issue.7, pp.1571-1578, 2007.
DOI : 10.1002/ijc.22788

G. D. Steinberg, B. S. Carter, T. H. Beaty, B. Childs, and P. C. Walsh, Family history and the risk of prostate cancer, The Prostate, vol.60, issue.4, pp.337-347, 1990.
DOI : 10.1002/pros.2990170409

M. L. Freedman, C. A. Haiman, N. Patterson, G. J. Mcdonald, A. Tandon et al., Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men, Proc. Natl. Acad
DOI : 10.1073/pnas.0605832103

I. Agalliu, R. Gern, S. Leanza, and R. D. Burk, Associations of High-Grade Prostate Cancer with BRCA1 and BRCA2 Founder Mutations, Clinical Cancer Research, vol.15, issue.3, pp.1112-1120, 2009.
DOI : 10.1158/1078-0432.CCR-08-1822

W. C. Hamilton, A. L. Hunt, and . Potosky, Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study, J. Natl. Cancer Inst, vol.93, issue.5, pp.388-395, 2001.

R. W. Ma and K. Chapman, A systematic review of the effect of diet in prostate cancer prevention and treatment, Journal of Human Nutrition and Dietetics, vol.98, issue.Suppl. 4, pp.187-199, 2009.
DOI : 10.1111/j.1365-277X.2009.00946.x

D. D. Alexander, P. J. Mink, C. A. Cushing, and B. Sceurman, A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer, Nutrition Journal, vol.59, issue.6, 2010.
DOI : 10.1002/ijc.2910590608

C. Rodriguez, S. J. Freedland, A. Deka, E. J. Jacobs, M. L. Mccullough et al., Body Mass Index, Weight Change, and Risk of Prostate Cancer in the Cancer Prevention Study II Nutrition Cohort, Cancer Epidemiology Biomarkers & Prevention, vol.16, issue.1
DOI : 10.1158/1055-9965.EPI-06-0754

S. Strum and D. Pogliano, What every doctor who treats male patients should know, PCRI Insights, vol.8, issue.2, 2005.

G. L. Lu-yao, P. C. Albertsen, D. F. Moore, W. Shih, Y. Lin et al., Outcomes of Localized Prostate Cancer Following Conservative Management, JAMA, vol.302, issue.11, pp.1202-1209, 2009.
DOI : 10.1001/jama.2009.1348

G. Oster, L. Lamerato, A. G. Glass, K. E. Richert-boe, A. Lopez et al., Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems, Supportive Care in Cancer, vol.100, issue.12, pp.3279-3286, 2013.
DOI : 10.1007/s00520-013-1887-3

L. Ye, H. G. Kynaston, and W. G. Jiang, Bone metastasis in prostate cancer: Molecular and cellular mechanisms (Review), International Journal of Molecular Medicine, vol.20, issue.1, pp.103-111, 2007.
DOI : 10.3892/ijmm.20.1.103

C. L. Carrol, F. G. Sommer, J. E. Mcneal, and T. A. Stamey, The abnormal prostate: MR imaging at 1.5 T with histopathologic correlation., Radiology, vol.163, issue.2, pp.521-525, 1987.
DOI : 10.1148/radiology.163.2.2436253

J. E. Mcneal, E. A. Redwine, F. S. Freiha, and T. A. Stamey, Zonal Distribution of Prostatic Adenocarcinoma, The American Journal of Surgical Pathology, vol.12, issue.12, pp.897-906, 1988.
DOI : 10.1097/00000478-198812000-00001

DOI : 10.1016/S0022-5347(01)62201-8

R. J. Cohen, B. A. Shannon, M. Phillips, R. E. Moorin, T. M. Wheeler et al., Central Zone Carcinoma of the Prostate Gland: A Distinct Tumor Type With Poor Prognostic Features, The Journal of Urology, vol.179, issue.5, pp.1762-1767, 2008.
DOI : 10.1016/j.juro.2008.01.017

R. Chou, J. M. Croswell, T. Dana, C. Bougatsos, I. Blazina et al., Screening for Prostate Cancer: A Review of the Evidence for the U.S. Preventive Services Task Force, Annals of Internal Medicine, vol.155, issue.11, pp.155-762, 2011.
DOI : 10.7326/0003-4819-155-11-201112060-00375

D. J. Kvale, J. L. Reding, L. A. Weissfeld, B. Yokochi, J. D. O-'brien et al., Mortality results from a randomized Prostate-cancer screening trial, New England Journal of Medicine, vol.360, issue.13, pp.1310-1319, 2009.

A. De-koning and . Auvinen, Prostate-cancer mortality at 11 years of follow-up, New England Journal of Medicine, vol.366, issue.11, pp.981-990, 2012.

J. Hugosson, S. Carlsson, G. Aus, S. Bergdahl, A. Khatami et al., Mortality results from the G??teborg randomised population-based prostate-cancer screening trial, The Lancet Oncology, vol.11, issue.8, pp.725-732, 2010.
DOI : 10.1016/S1470-2045(10)70146-7

A. Bourdoumis, A. G. Papatsoris, M. Chrisofos, E. Efstathiou, A. Skolarikos et al., The novel prostate cancer antigen 3 (PCA3) biomarker, International braz j urol, vol.36, issue.6, pp.665-668, 2010.
DOI : 10.1590/S1677-55382010000600003

R. Morgan, A. Boxall, A. Bhatt, M. Bailey, R. Hindley et al., Engrailed-2 (EN2): A Tumor Specific Urinary Biomarker for the Early Diagnosis of Prostate Cancer, Clinical Cancer Research, vol.17, issue.5, pp.1090-1098, 2011.
DOI : 10.1158/1078-0432.CCR-10-2410

J. Brenner, A. Chinnaiyan, and S. Tomlins, ETS Fusion Genes in Prostate Cancer, Prostate Cancer, pp.139-183, 2013.
DOI : 10.1007/978-1-4614-6828-8_5

C. M. Hoeks, J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford et al., Prostate Cancer: Multiparametric MR Imaging for Detection, Localization, and Staging, Prostate cancer: multiparametric MR imaging for detection, localization, and staging, pp.46-66, 2011.
DOI : 10.1148/radiol.11091822

C. M. Moore, A. Ridout, and M. Emberton, The role of MRI in active surveillance of prostate cancer, Current Opinion in Urology, vol.23, issue.3, pp.261-267, 2013.
DOI : 10.1097/MOU.0b013e32835f899f

DOI : 10.1016/S0022-5347(05)66086-7

G. P. Haas, N. B. Delongchamps, R. F. Jones, V. Chandan, A. M. Serio et al., Needle Biopsies on Autopsy Prostates: Sensitivity of Cancer Detection Based on True Prevalence, JNCI Journal of the National Cancer Institute, vol.99, issue.19, pp.99-1484, 2007.
DOI : 10.1093/jnci/djm153

A. V. Taira, G. S. Merrick, R. W. Galbreath, H. Andreini, W. Taubenslag et al., Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting, Prostate Cancer and Prostatic Diseases, vol.151, issue.1, pp.71-77, 2010.
DOI : 10.1111/j.1464-410X.2008.07542.x

N. B. Delongchamps, M. Peyromaure, A. Schull, F. Beuvon, N. Bouazza et al., Prebiopsy Magnetic Resonance Imaging and Prostate Cancer Detection: Comparison of Random and Targeted Biopsies, The Journal of Urology, vol.189, issue.2, pp.493-499, 2013.
DOI : 10.1016/j.juro.2012.08.195

B. Turkbey and P. L. Choyke, Multiparametric MRI and prostate cancer diagnosis and risk stratification, Current Opinion in Urology, vol.22, issue.4, pp.310-315, 2012.
DOI : 10.1097/MOU.0b013e32835481c2

J. O. Barentsz, J. Richenberg, R. Clements, P. Choyke, S. Verma et al., ESUR prostate MR guidelines 2012, ESUR prostate MR guidelines 2012, pp.746-757, 2012.
DOI : 10.1007/s00330-011-2377-y

H. Hricak, G. C. Dooms, J. E. Mcneal, A. S. Mark, M. Marotti et al., MR imaging of the prostate gland: normal anatomy, American Journal of Roentgenology, vol.148, issue.1, pp.51-58, 1987.
DOI : 10.2214/ajr.148.1.51

O. Akin, E. Sala, C. S. Moskowitz, K. Kuroiwa, N. M. Ishill et al., Transition Zone Prostate Cancers: Features, Detection, Localization, and Staging at Endorectal MR Imaging, Radiology, vol.239, issue.3, pp.784-792, 2006.
DOI : 10.1148/radiol.2392050949

L. Wang, Y. Mazaheri, J. Zhang, N. M. Ishill, K. Kuroiwa et al., Assessment of Biologic Aggressiveness of Prostate Cancer: Correlation of MR Signal Intensity with Gleason Grade after Radical Prostatectomy, Radiology, vol.246, issue.1, pp.168-176, 2008.
DOI : 10.1148/radiol.2461070057

A. P. Kirkham, M. Emberton, and C. Allen, How Good is MRI at Detecting and Characterising Cancer within the Prostate?, European Urology, vol.50, issue.6, pp.1163-1174, 2006.
DOI : 10.1016/j.eururo.2006.06.025

L. E. Quint, J. S. Van-erp, P. H. Bland, S. H. Mandell, E. A. Buono et al., Carcinoma of the prostate: MR images obtained with body coils do not accurately reflect tumor volume., American Journal of Roentgenology, vol.156, issue.3, pp.511-516, 1991.
DOI : 10.2214/ajr.156.3.1899746

M. Cruz, K. Tsuda, Y. Narumi, Y. Kuroiwa, T. Nose et al., Characterization of low-intensity lesions in the peripheral zone of prostate on pre-biopsy endorectal coil MR imaging, European Radiology, vol.12, issue.2, pp.357-365, 2002.
DOI : 10.1007/s003300101044

W. Liu, B. Turkbey, J. Senegas, S. Remmele, S. Xu et al., mapping for characterization of prostate cancer, Magnetic Resonance in Medicine, vol.5, issue.5, pp.1400-1406, 2011.
DOI : 10.1002/mrm.22874

G. P. Liney, M. Lowry, L. W. Turnbull, D. J. Manton, A. J. Knowles et al., Proton MRT2 Maps Correlate With The Citrate Concentration in the Prostate, NMR in Biomedicine, vol.35, issue.2, pp.59-64, 1996.
DOI : 10.1002/(SICI)1099-1492(199604)9:2<59::AID-NBM400>3.0.CO;2-2

G. P. Liney, L. W. Turnbull, M. Lowry, L. S. Turnbull, A. J. Knowles et al., In vivo quantification of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1H MRS and MRI, Magnetic Resonance Imaging, vol.15, issue.10, pp.1177-1186, 1997.
DOI : 10.1016/S0730-725X(97)00182-3

G. P. Liney, A. J. Knowles, D. J. Manton, L. W. Turnbull, S. J. Blackband et al., Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: Application to the prostate, Journal of Magnetic Resonance Imaging, vol.2, issue.4, pp.603-607, 1996.
DOI : 10.1002/jmri.1880060408

P. Gibbs, D. J. Tozer, G. P. Liney, and L. W. Turnbull, Comparison of quantitativeT2 mapping and diffusion-weighted imaging in the normal and pathologic prostate, Magnetic Resonance in Medicine, vol.152, issue.6, pp.1054-1058, 2001.
DOI : 10.1002/mrm.1298

S. Verma, B. Turkbey, N. Muradyan, A. Rajesh, F. Cornud et al., Overview of Dynamic Contrast-Enhanced MRI in Prostate Cancer Diagnosis and Management, American Journal of Roentgenology, vol.198, issue.6, pp.1277-1288, 2012.
DOI : 10.2214/AJR.12.8510

I. Gribbestad, K. Gjesdal, G. Nilsen, S. Lundgren, M. Hjelstuen et al., An introduction to dynamic contrastenhanced MRI in oncology, Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology, pp.1-22, 2005.

A. R. Padhani, Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions, Journal of Magnetic Resonance Imaging, vol.10, issue.4, pp.407-422, 2002.
DOI : 10.1002/jmri.10176

P. Tofts, T1-weighted DCE imaging concepts: modelling, acquisition and analysis, in: Magneton Flash, 2010.

A. B. Rosenkrantz, A. Sabach, J. S. Babb, B. W. Matza, S. S. Taneja et al., Prostate Cancer: Comparison of Dynamic Contrast-Enhanced MRI Techniques for Localization of Peripheral Zone Tumor, American Journal of Roentgenology, vol.201, issue.3, pp.471-478, 2013.
DOI : 10.2214/AJR.12.9737

. Barentsz, Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results, Radiology, vol.203, issue.3, pp.645-652, 1997.

J. K. Kim, S. S. Hong, Y. J. Choi, S. H. Park, H. Ahn et al., Wash-in rate on the basis of dynamic contrast-enhanced MRI: Usefulness for prostate cancer detection and localization, Journal of Magnetic Resonance Imaging, vol.164, issue.5, pp.639-646, 2005.
DOI : 10.1002/jmri.20431

H. P. Schlemmer, J. Merkle, R. Grobholz, T. Jaeger, M. S. Michel et al., Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?, European Radiology, vol.14, issue.2, pp.309-317, 2004.
DOI : 10.1007/s00330-003-2025-2

B. Zelhof, M. Lowry, G. Rodrigues, S. Kraus, and L. Turnbull, Description of magnetic resonance imaging-derived enhancement variables in pathologically confirmed prostate cancer and normal peripheral zone regions, BJU International, vol.73, issue.5, pp.621-627, 2009.
DOI : 10.1111/j.1464-410X.2009.08457.x

C. G. Van-niekerk, J. A. Witjes, J. O. Barentsz, J. A. Van-der-laak, and C. A. , Microvascularity in transition zone prostate tumors resembles normal prostatic tissue, The Prostate, vol.77, issue.1, pp.467-475, 2013.
DOI : 10.1002/pros.22588

D. , L. Bihan, E. Breton, D. Lallemand, M. L. Aubin et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging, Radiology, vol.168, issue.2, pp.497-505, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00349716

D. M. Koh and D. J. Collins, Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology, American Journal of Roentgenology, vol.188, issue.6, pp.1622-1635, 2007.
DOI : 10.2214/AJR.06.1403

T. A. Huisman, Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma, European Radiology, vol.13, issue.10, pp.2283-2297, 2003.
DOI : 10.1007/s00330-003-1843-6

D. , L. Bihan, E. Breton, D. Lallemand, P. Grenier et al., MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders, Radiology, vol.161, issue.2, pp.401-407, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00349714

R. Shimofusa, H. Fujimoto, H. Akamata, K. Motoori, S. Yamamoto et al., Diffusion-Weighted Imaging of Prostate Cancer, Journal of Computer Assisted Tomography, vol.29, issue.2, pp.149-153, 2005.
DOI : 10.1097/01.rct.0000156396.13522.f2

A. R. Padhani, Integrating multiparametric prostate MRI into clinical practice, Cancer Imaging 11 Spec No A, pp.27-37, 2011.

K. W. Doo, D. J. Sung, B. J. Park, M. J. Kim, S. B. Cho et al., Detectability of low and intermediate or high risk prostate cancer with combined T2-weighted and diffusion-weighted MRI, European Radiology, vol.22, issue.8, pp.22-1812, 2012.
DOI : 10.1007/s00330-012-2430-5

T. Hambrock, D. M. Somford, H. J. Huisman, I. M. Van-oort, J. A. Witjes et al., Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer, Radiology, vol.259, issue.2, pp.453-461, 2011.
DOI : 10.1148/radiol.11091409

Y. Itou, K. Nakanishi, Y. Narumi, Y. Nishizawa, and H. Tsukuma, Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: Can ADC values contribute to assess the aggressiveness of prostate cancer?, Journal of Magnetic Resonance Imaging, vol.246, issue.Spec no. 2, pp.167-172, 2011.
DOI : 10.1002/jmri.22317

Y. Peng, Y. Jiang, C. Yang, J. Brown, T. Antic et al., Quantitative Analysis of Multiparametric Prostate MR Images: Differentiation between Prostate Cancer and Normal Tissue and Correlation with Gleason Score???A Computer-aided Diagnosis Development Study, Radiology, vol.267, issue.3, pp.787-796, 2013.
DOI : 10.1148/radiol.13121454

H. M. Awwad, J. Geisel, and R. Obeid, The role of choline in prostate cancer, Clinical Biochemistry, vol.45, issue.18, pp.1548-1553, 2012.
DOI : 10.1016/j.clinbiochem.2012.08.012

L. C. Costello and R. B. Franklin, The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots, Mol. Cancer, vol.5, issue.17, 2006.

M. B. Gribbestad and . Tessem, Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness, PLoS ONE, vol.8, issue.4, p.62375, 2013.

M. Van-der-graaf, R. G. Schipper, G. O. Oosterhof, J. A. Schalken, A. A. Verhofstad et al., Proton MR spectroscopy of prostatic tissue focused on the detection of spermine, a possible biomarker of malignant behavior in prostate cancer, Magnetic Resonance Materials in Biology, Physics, and Medicine, vol.10, issue.3, pp.153-159, 2000.
DOI : 10.1016/S1352-8661(00)00082-X

S. Parfait, Classification de spectres et recherche de biomarqueurs en spectroscopie par résonqnce magnétique nulcléaire du proton dans les tumeurs prostatiques, 2010.

S. Verma, A. Rajesh, J. J. Futterer, B. Turkbey, T. W. Scheenen et al., Prostate MRI and 3D MR Spectroscopy: How We Do It, American Journal of Roentgenology, vol.194, issue.6, pp.1414-1426, 2010.
DOI : 10.2214/AJR.10.4312

J. Scheidler, H. Hricak, D. B. Vigneron, K. K. Yu, D. L. Sokolov et al., Prostate Cancer: Localization with Three-dimensional Proton MR Spectroscopic Imaging???Clinicopathologic Study, Radiology, vol.213, issue.2, pp.473-480, 1999.
DOI : 10.1148/radiology.213.2.r99nv23473

Y. Kaji, J. Kurhanewicz, H. Hricak, D. L. Sokolov, L. R. Huang et al., Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging., Radiology, vol.206, issue.3, pp.785-790, 1998.
DOI : 10.1148/radiology.206.3.9494502

J. C. Vilanova, J. Comet, C. Barceló-vidal, J. Barceló, E. López-bonet et al., Peripheral Zone Prostate Cancer in Patients with Elevated PSA Levels and Low Free-to-Total PSA Ratio: Detection with MR Imaging and MR Spectroscopy, Radiology, vol.253, issue.1, pp.135-143, 2009.
DOI : 10.1148/radiol.2531082049

G. Lema??trelema??tre, Absolute quantification at 3 T, Master's thesis, 2011.

R. Nowak, Wavelet-based Rician noise removal for magnetic resonance imaging, Image Processing, IEEE Transactions on, vol.8, issue.10, pp.1408-1419, 1999.

J. V. Manjon, J. Carbonell-caballero, J. J. Lull, G. Garcia-marti, L. Marti-bonmati et al., MRI denoising using Non-Local Means, Medical Image Analysis, vol.12, issue.4, pp.514-523, 2008.
DOI : 10.1016/j.media.2008.02.004

A. Buades, B. Coll, and J. , A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

J. Mohan, V. Krishnaveni, and Y. Guo, A survey on the magnetic resonance image denoising methods, Biomedical Signal Processing and Control, vol.9, issue.0, pp.56-69, 2014.
DOI : 10.1016/j.bspc.2013.10.007

S. Ozer, M. Haider, D. L. Langer, T. H. Van-der-kwast, A. Evans et al., Prostate cancer localization with multispectral MRI based on Relevance Vector Machines, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.73-76, 2009.
DOI : 10.1109/ISBI.2009.5192986

S. Ozer, D. L. Langer, X. Liu, M. A. Haider, T. H. Van-der-kwast et al., Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI, Medical Physics, vol.12, issue.1, pp.1873-1883, 2010.
DOI : 10.1118/1.3359459

A. Pizurica, Image denoising using wavelets and spatial context modeling, 2002.

D. Ampeliotis, A. Anonakoudi, K. Berberidis, and E. Z. Psarakis, Computer Aided Detection of Prostate Cancer using Fused Information from Dynamic Contrast Enhanced and Morphological Magnetic Resonance Images, 2007 IEEE International Conference on Signal Processing and Communications, pp.888-891, 2007.
DOI : 10.1109/ICSPC.2007.4728462

D. Ampeliotis, A. Anonakoudi, K. Berberidis, E. Z. Psarakis, and A. Kounoudes, A computer-aided system for the detection of prostate cancer based on magnetic resonance image analysis, 2008 3rd International Symposium on Communications, Control and Signal Processing, 2008.
DOI : 10.1109/ISCCSP.2008.4537440

S. Mallat, A wavelet tour of signal processing, Third Edition: The sparse way, 2008.

R. Lopes, A. Ayache, N. Makni, P. Puech, A. Villers et al., Prostate cancer characterization on MR images using fractal features, Medical Physics, vol.20, issue.3, pp.83-95, 2011.
DOI : 10.1016/S0167-8655(00)00046-5

A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, A versatile wavelet domain noise filtration technique for medical imaging, IEEE Transactions on Medical Imaging, vol.22, issue.3, pp.323-331, 2003.
DOI : 10.1109/TMI.2003.809588

D. Middleton and R. Esposito, Simultaneous optimum detection and estimation of signals in noise, Information Theory, IEEE Transactions on, vol.14, issue.3, pp.434-444, 1968.

M. Styner, C. Brechbuhler, G. Szckely, and G. Gerig, Parametric estimate of intensity inhomogeneities applied to MRI, Medical Imaging, IEEE Transactions on, vol.19, issue.3, pp.153-165, 2000.

M. Jungke, W. Von-seelen, G. Bielke, S. Meindl, M. Grigat et al., A system for the diagnostic use of tissue characterizing parameters in NMR-tomography, Proc. of Information Processing in Medical Imaging, pp.471-481, 1987.

U. Vovk, F. Pernus, and B. Likar, A review of methods for correction of intensity inhomogeneity in MRI, Medical Imaging, IEEE Transactions on, vol.26, issue.3, pp.405-421, 2007.

S. Viswanath, B. N. Bloch, M. Rosen, J. Chappelow, R. Toth et al., Integrating structural and functional imaging for computer assisted detection of prostate cancer on 36

D. Lv, X. Guo, X. Wang, J. Zhang, and J. Fang, Computerized characterization of prostate cancer by fractal analysis in MR images, Journal of Magnetic Resonance Imaging, vol.42, issue.1, pp.161-168, 2009.
DOI : 10.1002/jmri.21819

A. Madabhushi, J. Udupa, and A. Souza, Generalized scale: Theory, algorithms, and application to image inhomogeneity correction, Computer Vision and Image Understanding, vol.101, issue.2, pp.100-121, 2006.
DOI : 10.1016/j.cviu.2005.07.010

L. G. Nyul and J. K. Udupa, On standardizing the MR image intensity scale, Magnetic Resonance in Medicine, vol.42, issue.6, pp.1072-1081, 1999.
DOI : 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.3.CO;2-D

Y. Artan, D. Langer, M. Haider, T. H. Van-der-kwast, A. Evans et al., Prostate cancer segmentation with multispectral MRI using cost-sensitive Conditional Random Fields, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.278-281, 2009.
DOI : 10.1109/ISBI.2009.5193038

. Yetik, Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields, IEEE Trans Image Process, vol.19, issue.9, pp.2444-2455, 2010.

P. Liu, S. Wang, B. Turkbey, P. C. Grant, K. Pinto et al., A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels, Medical Imaging 2013: Computer-Aided Diagnosis, pp.86701-86701, 2013.
DOI : 10.1117/12.2007927

L. G. Nyul, J. K. Udupa, and X. Zhang, New variants of a method of MRI scale standardization, IEEE Transactions on Medical Imaging, vol.19, issue.2, pp.143-150, 2000.
DOI : 10.1109/42.836373

S. Viswanath, B. N. Bloch, J. Chappelow, P. Patel, N. Rofsky et al., Enhanced multiprotocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI, Proc. SPIE 7963, 2011.

S. E. Viswanath, N. B. Bloch, J. C. Chappelow, R. Toth, N. M. Rofsky et al., Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imagery, Journal of Magnetic Resonance Imaging, vol.21, issue.1, pp.213-224, 2012.
DOI : 10.1002/jmri.23618

A. Madabhushi and J. K. Udupa, New methods of MR image intensity standardization via generalized scale, Medical Physics, vol.2164, issue.4, pp.3426-3434, 2006.
DOI : 10.1118/1.2335487

E. Niaf, O. Rouvire, and C. Lartizien, Computer-aided diagnosis for prostate cancer detection in the peripheral zone via multisequence MRI, Medical Imaging 2011: Computer-Aided Diagnosis, 2011.
DOI : 10.1117/12.877231

E. Niaf, O. Rouviere, F. Mege-lechevallier, F. Bratan, and C. Lartizien, Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI, Physics in Medicine and Biology, vol.57, issue.12, pp.3833-3851, 2012.
DOI : 10.1088/0031-9155/57/12/3833

URL : https://hal.archives-ouvertes.fr/hal-00796813

M. Wiart, L. Curiel, A. Gelet, D. Lyonnet, J. Y. Chapelon et al., Influence of perfusion on high-intensity focused ultrasound prostate ablation: A first-pass MRI study, Magnetic Resonance in Medicine, vol.17, issue.1, pp.119-127, 2007.
DOI : 10.1002/mrm.21271

URL : https://hal.archives-ouvertes.fr/hal-00399060

L. Chen, Z. Weng, L. Goh, and M. Garland, An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization, Journal of Magnetic Resonance, vol.158, issue.1-2, pp.164-168, 2002.
DOI : 10.1016/S1090-7807(02)00069-1

S. Parfait, P. Walker, G. Crhange, X. Tizon, and J. Mitran, Classification of prostate magnetic resonance spectra using Support Vector Machine, Biomedical Signal Processing and Control, vol.7, issue.5, pp.499-508, 2012.
DOI : 10.1016/j.bspc.2011.09.003

URL : https://hal.archives-ouvertes.fr/hal-00650862

H. Zhu, R. Ouwerkerk, and P. B. Barker, Dual-band water and lipid suppression for MR spectroscopic imaging at 3 Tesla, Magnetic Resonance in Medicine, vol.84, issue.6, pp.1486-1492, 2010.
DOI : 10.1002/mrm.22324

B. M. Kelm, B. H. Menze, C. M. Zechmann, K. T. Baudendistel, and F. A. Hamprecht, Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: Pattern recognition vs quantification, Magnetic Resonance in Medicine, vol.32, issue.1, pp.150-159, 2007.
DOI : 10.1002/mrm.21112

W. Pijnappel, A. Van-den-boogaart, R. De-beer, and D. Van-ormondt, SVD-based quantification of magnetic resonance signals, Journal of Magnetic Resonance (1969), vol.97, issue.1, pp.122-134, 1969.
DOI : 10.1016/0022-2364(92)90241-X

C. A. Lieber and A. Mahadevan-jansen, Automated Method for Subtraction of Fluorescence from Biological Raman Spectra, Applied Spectroscopy, vol.57, issue.11, pp.1363-1367, 2003.
DOI : 10.1366/000370203322554518

A. Devos, L. Lukas, J. A. Suykens, L. Vanhamme, A. R. Tate et al., Classification of brain tumours using short echo time 1H MR spectra, Journal of Magnetic Resonance, vol.170, issue.1, pp.164-175, 2004.
DOI : 10.1016/j.jmr.2004.06.010

P. Tiwari, S. Viswanath, J. Kurhanewicz, A. Sridhar, and A. Madabhushi, Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection, NMR in Biomedicine, vol.38, issue.4, pp.607-619, 2012.
DOI : 10.1002/nbm.1777

S. Ghose, A. Oliver, R. Marti, X. Llado, J. C. Vilanova et al., A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images, Computer Methods and Programs in Biomedicine, vol.108, issue.1, pp.262-287, 2012.
DOI : 10.1016/j.cmpb.2012.04.006

URL : https://hal.archives-ouvertes.fr/hal-00695557

O. Chilali, A. Ouzzane, M. Diaf, and N. Betrouni, A survey of prostate modeling for image analysis, Computers in Biology and Medicine, vol.53, issue.0, pp.190-202, 2014.
DOI : 10.1016/j.compbiomed.2014.07.019

URL : https://hal.archives-ouvertes.fr/hal-01183304

L. Matulewicz, J. F. Jansen, L. Bokacheva, H. A. Vargas, O. Akin et al., Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imaging, Journal of Magnetic Resonance Imaging, 2013.

P. Puech, N. Betrouni, N. Makni, A. S. Dewalle, A. Villers et al., Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results, International Journal of Computer Assisted Radiology and Surgery, vol.5, issue.2, pp.1-10, 2009.
DOI : 10.1007/s11548-008-0261-2

P. C. Vos, T. Hambrock, J. O. Barenstz, and H. J. Huisman, Combining T2-weighted with dynamic MR images for computerized classification of prostate lesions, Medical Imaging 2008: Computer-Aided Diagnosis, 2008.
DOI : 10.1117/12.771970

P. C. Vos, T. Hambrock, C. A. Hulsbergen-van-de-kaa, J. J. Futterer, J. O. Barentsz et al., Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI, Medical Physics, vol.10, issue.3, pp.888-899, 2008.
DOI : 10.1002/mrm.1910340320

G. J. Litjens, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a zone-based approach, Medical Imaging 2012: Computer-Aided Diagnosis, pp.83150-83150, 2012.
DOI : 10.1117/12.911061

S. Klein, U. A. Van-der-heide, I. M. Lips, M. Van-vulpen, M. Staring et al., Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information, Medical Physics, vol.25, issue.11, pp.1407-1417, 2008.
DOI : 10.1109/TMI.2006.880587

G. Litjens, O. Debats, W. Van-de-ven, N. Karssemeijer, and H. Huisman, A Pattern Recognition Approach to Zonal Segmentation of the Prostate on MRI, Med Image Comput Comput Assist Interv, vol.15, pp.413-420, 2012.
DOI : 10.1007/978-3-642-33418-4_51

G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman, Computer-iided detection of prostate cancer in MRI, Medical Imaging, IEEE Transactions on, vol.33, issue.5, pp.1083-1092, 2014.

B. Edwards, F. Maan, S. Van-der-heijden, J. Ghose, J. Mitra et al., Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge, Med Image Anal, vol.18, issue.2, pp.359-373, 2014.

T. R. Langerak, U. A. Van-der-heide, A. N. Kotte, M. A. Viergever, M. Van-vulpen et al., Label fusion in atlasbased segmentation using a selective and iterative method for performance level estimation (SIMPLE), IEEE Trans Med Imaging, vol.29, issue.12, 2000.

S. Viswanath, B. N. Bloch, E. Genega, N. Rofsky, R. Lenkinski et al., A Comprehensive Segmentation, Registration, and Cancer Detection Scheme on 3 Tesla In Vivo Prostate DCE-MRI, Med Image Comput Comput Assist Interv, vol.11, pp.662-669, 2008.
DOI : 10.1007/978-3-540-85988-8_79

R. Toth, J. Chappelow, M. Rosen, S. Pungavkar, A. Kalyanpur et al., Multi-Attribute Non-initializing Texture Reconstruction Based Active Shape Model (MANTRA), Med Image Comput Comput Assist Interv, vol.11, pp.653-661, 2008.
DOI : 10.1007/978-3-540-85988-8_78

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, Active Shape Models-Their Training and Application, Computer Vision and Image Understanding, vol.61, issue.1, pp.38-59, 1995.
DOI : 10.1006/cviu.1995.1004

G. J. Litjens, P. C. Vos, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, Automatic computer aided detection of abnormalities in multi-parametric prostate MRI, Medical Imaging 2011: Computer-Aided Diagnosis, pp.79630-79630, 2011.
DOI : 10.1117/12.877844

P. C. Vos, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis, Physics in Medicine and Biology, vol.57, issue.6, pp.1527-1542, 2012.
DOI : 10.1088/0031-9155/57/6/1527

H. Huisman, P. Vos, G. Litjens, T. Hambrock, and J. Barentsz, Computer aided detection of prostate cancer using T2, DWI and DCE MRI: methods and clinical applications cancer imaging: computer-aided diagnosis, prognosis, and intervention, MICCAI'10, Proceedings of the 2010 international conference on Prostate, pp.4-14, 2010.

P. Tiwari, M. Rosen, and A. Madabhushi, A hierarchical spectral clustering and nonlinear dimensionality reduction scheme for detection of prostate cancer from magnetic resonance spectroscopy (MRS), Medical Physics, vol.233, issue.8, pp.3927-3939, 2009.
DOI : 10.1148/radiol.2333030672

J. Shi and J. Malik, Normalized cuts and image segmentation, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.8, pp.888-905, 2000.

J. B. Maintz and M. A. Viergever, A survey of medical image registration, Medical Image Analysis, vol.2, issue.1, pp.1-36, 1998.
DOI : 10.1016/S1361-8415(01)80026-8

B. Zitová and J. Flusser, Image registration methods: a survey, Image and Vision Computing, vol.21, issue.11, pp.977-1000, 2003.
DOI : 10.1016/S0262-8856(03)00137-9

J. Mitra, R. Marti, A. Oliver, X. Llado, J. C. Vilanova et al., A comparison of thin-plate splines with automatic correspondences and B-splines with uniform grids for multimodal prostate registration, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, 2011.
DOI : 10.1117/12.877956

URL : https://hal.archives-ouvertes.fr/hal-00583911

J. Mitra, Z. Kato, R. Marti, A. Oliver, X. Llado et al., A spline-based non-linear diffeomorphism for multimodal prostate registration, Medical Image Analysis, vol.16, issue.6, pp.1259-1279, 2012.
DOI : 10.1016/j.media.2012.04.006

URL : https://hal.archives-ouvertes.fr/hal-00695562

R. Toth, S. Doyle, S. Pungavkar, A. Kalyanpur, and A. Madabhushi, A boosted ensemble scheme for accurate landmark detection for active shape models, SPIE Medical Imaging, vol.7260, 2009.

J. Pluim, J. Maintz, and M. Viergever, Mutual-information-based registration of medical images: a survey, IEEE Transactions on Medical Imaging, vol.22, issue.8, pp.986-1004, 2003.
DOI : 10.1109/TMI.2003.815867

J. Chappelow, B. N. Bloch, N. Rofsky, E. Genega, R. Lenkinski et al., Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information, Medical Physics, vol.172, issue.1, pp.2005-2018, 2011.
DOI : 10.1118/1.3560879

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.
DOI : 10.1137/0916069

P. Viola and W. M. Wells, III, Alignment by maximization of mutual information, International Journal of Computer Vision, vol.24, issue.2, pp.137-154, 1997.
DOI : 10.1023/A:1007958904918

J. Mitra, Multimodal image registration applied to magnetic resonance and ultrasound prostatic images, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00786032

P. C. Vos, T. Hambrock, J. O. Barenstz, and H. J. Huisman, Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI, Physics in Medicine and Biology, vol.55, issue.6, pp.1719-1734, 2010.
DOI : 10.1088/0031-9155/55/6/012

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach et al., Nonrigid registration using free-form deformations: application to breast MR images, IEEE Transactions on Medical Imaging, vol.18, issue.8, pp.712-721, 1999.
DOI : 10.1109/42.796284

X. Liu, D. L. Langer, M. A. Haider, Y. Yang, M. N. Wernick et al., Prostate Cancer Segmentation With Simultaneous Estimation of Markov Random Field Parameters and Class, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.906-915, 2009.
DOI : 10.1109/TMI.2009.2012888

S. Mazzetti, M. De-luca, C. Bracco, A. Vignati, V. Giannini et al., A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI, Medical Imaging 2011: Computer-Aided Diagnosis, pp.79633-79633, 2011.
DOI : 10.1117/12.877549

Y. S. Sung, H. J. Kwon, B. W. Park, G. Cho, C. K. Lee et al., Prostate Cancer Detection on Dynamic Contrast-Enhanced MRI: Computer-Aided Diagnosis Versus Single Perfusion Parameter Maps, American Journal of Roentgenology, vol.197, issue.5, pp.1122-1129, 2011.
DOI : 10.2214/AJR.10.6062

P. Tiwari, A. Madabhushi, and M. Rosen, A Hierarchical Unsupervised Spectral Clustering Scheme for Detection of Prostate Cancer from Magnetic Resonance Spectroscopy (MRS), Med Image Comput Comput Assist Interv, vol.10, issue.2, pp.278-286, 2007.
DOI : 10.1007/978-3-540-75759-7_34

P. Tiwari, M. Rosen, and A. Madabhushi, Consensus-Locally Linear Embedding (C-LLE): Application to Prostate Cancer Detection on Magnetic Resonance Spectroscopy, Med Image Comput Comput Assist Interv, vol.11, issue.2, pp.330-338, 2008.
DOI : 10.1007/978-3-540-85990-1_40

P. Tiwari, M. Rosen, G. Reed, J. Kurhanewicz, and A. Madabhushi, Spectral Embedding Based Probabilistic Boosting Tree (ScEPTre): Classifying High Dimensional Heterogeneous Biomedical Data, Med Image Comput Comput Assist Interv, vol.12, issue.2, pp.844-851, 2009.
DOI : 10.1007/978-3-642-04271-3_102

P. Tiwari, J. Kurhanewicz, M. Rosen, and A. Madabhushi, Semi Supervised Multi Kernel (SeSMiK) Graph Embedding: Identifying Aggressive Prostate Cancer via Magnetic Resonance Imaging and Spectroscopy, Med Image Comput Comput Assist Interv, vol.13, pp.666-673, 2010.
DOI : 10.1007/978-3-642-15711-0_83

P. Tiwari, J. Kurhanewicz, and A. Madabhushi, Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS, Medical Image Analysis, vol.17, issue.2, pp.219-235, 2013.
DOI : 10.1016/j.media.2012.10.004

S. Viswanath, P. Tiwari, M. Rosen, and A. Madabhushi, A meta-classifier for detecting prostate cancer by quantitative integration of in vivo magnetic resonance spectroscopy and magnetic resonance imaging, Medical Imaging 2008: Computer-Aided Diagnosis, 2008.
DOI : 10.1117/12.771022

D. L. Langer, T. H. Van-der-kwast, A. J. Evans, J. Trachtenberg, B. C. Wilson et al., Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI, Journal of Magnetic Resonance Imaging, vol.233, issue.2, pp.327-334, 2009.
DOI : 10.1002/jmri.21824

J. Prewitt, Picture processing and psychohistories, 1970.

I. Sobel, Camera models and machine perception, Tech. rep., DTIC Document, 1970.

R. Kirsch, Computer determination of the constituent structure of biological images, Computers and Biomedical Research, vol.4, issue.3, pp.315-328, 1971.
DOI : 10.1016/0010-4809(71)90034-6

D. Gabor, Theory of communication Part 1: The analysis of information, Electrical Engineers -Part III: Radio and Communication Engineering, Journal of the Institution, vol.93, issue.26, pp.429-441, 1946.

J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America A, vol.2, issue.7, pp.1160-1169, 1985.
DOI : 10.1364/JOSAA.2.001160

R. Haralick, K. Shanmugam, and I. Dinstein, Textural features for image classification, Systems, Man and Cybernetics, IEEE Transactions on SMC, vol.3, issue.6, pp.610-621, 1973.

T. Antic, Y. Peng, Y. Jiang, M. L. Giger, S. Eggener et al., A study of T2-weighted MR image texture features and 40

A. Benassi, S. Cohen, and J. Istas, Identifying the multifractional function of a Gaussian process, Statistics & Probability Letters, vol.39, issue.4, pp.337-345, 1998.
DOI : 10.1016/S0167-7152(98)00078-9

N. Ahmed, T. Natarajan, and K. Rao, Discrete cosine transform, Computers, IEEE Transactions on C, vol.23, issue.1, pp.90-93, 1974.

T. Leung and J. Malik, Representing and recognizing the visual appearance of materials using three-dimensional textons, International Journal of Computer Vision, vol.43, issue.1, pp.29-44, 2001.
DOI : 10.1023/A:1011126920638

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.886-893, 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.4, pp.509-522, 2002.

G. Zhao, T. Ahonen, J. Matas, and M. Pietikainen, Rotation-Invariant Image and Video Description With Local Binary Pattern Features, Image Processing, IEEE Transactions on, vol.21, issue.4, pp.1465-1477, 2012.

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

P. S. Tofts, Modeling tracer kinetics in dynamic Gd-DTPA MR imaging, Journal of Magnetic Resonance Imaging, vol.11, issue.1, pp.91-101, 1997.
DOI : 10.1002/jmri.1880070113

P. Castorina, P. P. Delsanto, and C. Guiot, Classification Scheme for Phenomenological Universalities in Growth Problems in Physics and Other Sciences, Physical Review Letters, vol.96, issue.18, p.96, 2006.
DOI : 10.1103/PhysRevLett.96.188701

H. Ratiney, M. Sdika, Y. Coenradie, S. Cavassila, D. Van-ormondt et al., Time-domain semi-parametric estimation based on a metabolite basis set, NMR in Biomedicine, vol.13, issue.1, pp.1-13, 2005.
DOI : 10.1002/nbm.895

URL : https://hal.archives-ouvertes.fr/hal-00443422

L. Vanhamme, A. Van-den-boogaart, and S. Van-huffel, Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge, Journal of Magnetic Resonance, vol.129, issue.1, pp.35-45, 1997.
DOI : 10.1006/jmre.1997.1244

T. Coleman and Y. Li, An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, vol.6, issue.2, 1993.
DOI : 10.1137/0806023

S. W. Provencher, Estimation of metabolite concentrations from localizedin vivo proton NMR spectra, Magnetic Resonance in Medicine, vol.10, issue.6, pp.672-679, 1993.
DOI : 10.1002/mrm.1910300604

R. Coifman and M. Wickerhauser, Entropy-based algorithms for best basis selection, Information Theory, IEEE Transactions on, vol.38, issue.2, pp.713-718, 1992.

Y. Saeys, I. Inza, and P. Larranaga, A review of feature selection techniques in bioinformatics, Bioinformatics, vol.23, issue.19, pp.2507-2517, 2007.
DOI : 10.1093/bioinformatics/btm344

H. Peng, F. Long, and C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.27, issue.8, pp.1226-1238, 2005.

I. Fodor, A survey of dimension reduction techniques, 2002.
DOI : 10.2172/15002155

I. T. Jolliffe, Principal Component Analysis, 2002.
DOI : 10.1007/978-1-4757-1904-8

M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in Neural Information Processing Systems, pp.585-591, 2001.

S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

C. M. Bishop, Pattern recognition and machine learning, 2006.

A. Fred and A. Jain, Combining multiple clusterings using evidence accumulation, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.27, issue.6, pp.835-850, 2005.
DOI : 10.1109/tpami.2005.113

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Friedman, Regularized Discriminant Analysis, Journal of the American Statistical Association, vol.33, issue.405, pp.165-175, 1989.
DOI : 10.1080/01621459.1989.10478752

I. Rish, An empirical study of the naive Bayes classifier, IJCAI 2001 workshop on empirical methods in artificial intelligence, pp.41-46, 2001.

Y. Freund and R. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119-139, 1997.
DOI : 10.1006/jcss.1997.1504

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

Z. Tu, Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, pp.1589-1596, 2005.

J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting, Annals of Statistics, vol.28, 1998.

C. Rasmussen and C. Williams, Gaussian Processes in Machine Learning, 2005.
DOI : 10.1162/089976602317250933

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.144-152, 1992.
DOI : 10.1145/130385.130401

M. Tipping, Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, vol.1, pp.211-244, 2001.

J. Quinonero-candela, A. Girard, and C. Rasmussen, Prediction at an Uncertain Input for Gaussian processes and relevance vector machines application to Multiple-Step ahead time-series forecasting, 2002.

D. F. Specht, Probabilistic neural networks for classification, mapping, or associative memory, IEEE International Conference on Neural Networks, pp.525-532, 1988.
DOI : 10.1109/ICNN.1988.23887

B. Efron, Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation, Journal of the American Statistical Association, vol.78, issue.382, pp.316-331, 1983.
DOI : 10.1080/01621459.1983.10477973

C. E. Metz, Receiver Operating Characteristic Analysis: A Tool for the Quantitative Evaluation of Observer Performance and Imaging Systems, Journal of the American College of Radiology, vol.3, issue.6, pp.413-422, 2006.
DOI : 10.1016/j.jacr.2006.02.021

L. Lle, Non-linear mapping Laplacian eigenmaps, pp.145-174