Classification of SD-OCT Volumes with LBP: Application to DME Detection

Abstract : This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Our method is based on Local Binary Patterns (LBP) features to describe the texture of Optical Coherence Tomography (OCT) images and we compare different LBP features extraction approaches to compute a single signature for the whole OCT volume. Experimental results with two datasets of respectively 32 and 30 OCT volumes show that regardless of using low or high level representations, features derived from LBP texture have highly discriminative power. Moreover, the experiments show that the proposed method achieves better classification performances than other recent published works.
Type de document :
Communication dans un congrès
Ophthalmic Medical Image Analysis Workshop (OMIA), Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015, Oct 2015, Munich, Germany. 2015
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01235888
Contributeur : Guillaume Lemaitre <>
Soumis le : lundi 30 novembre 2015 - 20:48:52
Dernière modification le : vendredi 4 décembre 2015 - 01:02:11
Document(s) archivé(s) le : samedi 29 avril 2017 - 00:28:02

Fichier

master(2).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01235888, version 1

Collections

Citation

Guillaume Lemaitre, Mojdeh Rastgoo, Joan Massich, Shrinivasan Sankar, Fabrice Mériaudeau, et al.. Classification of SD-OCT Volumes with LBP: Application to DME Detection. Ophthalmic Medical Image Analysis Workshop (OMIA), Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015, Oct 2015, Munich, Germany. 2015. 〈hal-01235888〉

Partager

Métriques

Consultations de
la notice

106

Téléchargements du document

57