A boosting approach for prostate cancer detection using multi-parametric MRI

Abstract : Prostate cancer has been reported as the second most frequently diagnosed men cancers in the world. In the last decades, new imaging techniques based on MRI have been developed in order to improve the diagnosis task of radiologists. In practise, diagnosis can be affected by multiple factors reducing the chance to detect potential lesions. Computer-aided detection and computer-aided diagnosis have been designed to answer to these needs and provide help to radiologists in their daily duties. In this study, we proposed an automatic method to detect prostate cancer from a per voxel manner using 3T multi-parametric Magnetic Resonance Imaging (MRI) and a gradient boosting classifier. The best performances are obtained using all multi-parametric information as well as zonal information. The sensitivity and specificity obtained are 94.7% and 93.0%, respectively and an Area Under Curve (AUC) of 0.968.
Type de document :
Communication dans un congrès
International Conference on Quality Control and Artificial Vision (QCAV) 2015, Jun 2015, Le Creusot, France
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01235890
Contributeur : Guillaume Lemaitre <>
Soumis le : vendredi 4 décembre 2015 - 11:30:35
Dernière modification le : mercredi 9 décembre 2015 - 01:01:55

Fichier

glemaitre_qcav_2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01235890, version 1

Collections

Citation

Guillaume Lemaitre, Joan Massich, Robert Martí, Jordi Freixenet, Vilanova Joan C, et al.. A boosting approach for prostate cancer detection using multi-parametric MRI. International Conference on Quality Control and Artificial Vision (QCAV) 2015, Jun 2015, Le Creusot, France. <hal-01235890>

Partager

Métriques

Consultations de
la notice

65

Téléchargements du document

143