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ABSTRACT

Prostate cancer has been reported as the second most frequently diagnosed men cancers in the world. In the
last decades, new imaging techniques based on MRI have been developed in order to improve the diagnosis task
of radiologists. In practise, diagnosis can be affected by multiple factors reducing the chance to detect potential
lesions. Computer-aided detection and computer-aided diagnosis have been designed to answer to these needs
and provide help to radiologists in their daily duties. In this study, we proposed an automatic method to detect
prostate cancer from a per voxel manner using 3T multi-parametric Magnetic Resonance Imaging (MRI) and a
gradient boosting classifier. The best performances are obtained using all multi-parametric information as well
as zonal information. The sensitivity and specificity obtained are 94.7% and 93.0%, respectively and an Area
Under Curve (AUC) of 0.968.
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1. INTRODUCTION

On a worldwide scale, prostate cancer (PCa) has been reported as the second most frequently diagnosed men
cancers accounting for 13.6%.1 Statistically, the estimated number of new diagnosed cases was 899, 000 with no
less than 258, 100 estimated deaths.1 In United States, aside from skin cancer, PCa was declared to be the most
commonly diagnosed cancer among men, implying that around one in seven men will be diagnosed with PCa
during his lifetime.2

Since its introduction in mid-1980s, prostate-specific antigen (PSA) is widely used for PCa screening3 and
has shown to improve early detection of PCa.4 However, several trials conducted in Europe and United States
conclude that PSA screening suffers from low specificity.5–7 Thus, current research focuses on developing new
screening methods to improve PCa detection. In this perspective, Magnetic Resonance Imaging (MRI) techniques
have recently shown promising results for PCa detection. Furthermore, three different modalities are currently
investigated: (i) T2 Weighted (T2-W) MRI, (ii) Dynamic Contrast-Enhanced (DCE) MRI and (iii) Diffusion
Weighted (DW) MRI.

Focusing on the state-of-the-art,8 it can be observed that extensive research has been carried out in order to
investigate the contributions of machine learning classifiers for PCa detection using the three aforementioned 3T
multi-parametric MRI such as Support Vector Machines (SVM),9–13 probabilistic boosting tree14 or probabilistic
neural network.14 However, these studies use different datasets and evaluation statistics to report their results.8

Thus, no fair comparisons between these different studies are possible.8

In this research, we investigate the performance of gradient boosting for PCa detection using 3T multi-
parametric MRI. Two different features extraction strategies have been chosen in order to feed the classifier:
(i) voxel-based and (ii) 3D texton-based. An evaluation of both strategies as well as the contribution of each
modality is provided. Furthermore, the dataset used for this experimentation is part of our future benchmarking
platform I2CVB available at http://visor.udg.edu/i2cvb/ and is ready for future comparisons.

Further author information: (Send correspondence to G.L.)
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Figure 1: Multi-parametric MRI data acquired for our experiment. The cancer is highlighted in red in the
different images: (a) T2-W-MRI modality, (b) ADC map, (c) and (d) DCE-MRI modality.

2. MATERIAL AND METHODS

2.1 Data

The multi-parametric MRI was acquired from a cohort of patients with higher-than-normal level of PSA. The
acquisition was performed using a 3T whole body MRI scanner (Siemens Magnetom Trio TIM, Erlangen, Ger-
many) using sequences to obtain T2-W MRI (see Fig. 1a), DCE MRI (see Fig. 1c and Fig. 1d) and DW MRI.
Aside of the MRI examinations, these patients also underwent a guided-biopsy. Finally, the dataset was com-
posed of a total of 20 patients of which 18 patients had biopsy proven PCa and 2 patients were “healthy” with
negative biopsies. The prostate organ as well as the prostate zones (i.e., peripheral zone (PZ) and central gland
(CG)) and PCa were manually segmented by an experienced radiologist. Therefore, 13 patients had a PCa in
the PZ, 3 patients had PCa in the CG, 2 patients had invasive PCa in both PZ and CG and finally 2 patients
were considered as “healthy”.

The ADC (see Fig. 1b) maps were computed using the scanner software and the DW MRI. The DCE MRI
sequence consists in a kinetic study composed of 40 samples over time. These DCE MRI sequences and ADC
maps were resampled using the spatial information of the T2-W MRI sequence with dimensions of 448×360×64



and voxel spacing of 0.68 × 0.68 × 1.25 mm3. Linear interpolation was used to compute missing data during
the up-sampling. The resampling was implemented in C++ using the Insight Segmentation and Registration
Toolkit.15

Due to the large number of samples available at a voxel scale, the dataset was pre-processed in order to deal
with a balanced dataset allowing to not bias the results. Therefore, all the positive samples (i.e., PCa voxels)
were stored and an equal number of negative samples (i.e., “healthy” voxels) were randomly selected from the
larger original pool. Thus, the total amount of positive and negative samples considered in our experiments
accounted for 218, 423 voxels.

2.2 Classification framework

2.2.1 Feature extraction strategies

Table 1: Overview of voxel features extracted in our classification framework.

Extraction strategy Name Size Short description

Voxel-based

VT2-W 1 Intensity of a voxel in the T2-W MRI

VADC 1 Intensity of a voxel in the ADC map

VDCE 40 Intensities of a voxel along the whole serie in the DCE MRI

VPZ 1 Boolean value of a voxel membership to the PZ

VCG 1 Boolean value of a voxel membership to the CG

3D texton-based

TT2-W 243 Intensities vector for a window of 9 × 9 × 3 voxels in the
T2-W MRI

TADC 243 Intensities vector for a window of 9 × 9 × 3 voxels in the
ADC map

TDCE 9720 Intensities vector for a window of 9× 9× 3 along the whole
serie in the DCE MRI

TPZ 243 Boolean vector of voxels memberships to the PZ for a win-
dow of 9 × 9 × 3

TCG 243 Boolean vector of voxels memberships to the CG for a win-
dow of 9 × 9 × 3

A summary of the extracted features as well as the chosen strategies are summarized in Table 1. Two main
strategies are applied to extract features. In the voxel-based approach, at each voxel location, the intensities for
the different MRI modalities are extracted as well as the membership of this voxel to belong to the PZ or CG.
The 3D texton-based approach extend this extraction for a 3D window of size 9× 9× 3 around the central voxel.
In both case, the vectors V (·) and T (·) extracted are scaled using min-max normalization.

Then, the different concatenation of the vectors V (·) and T (·) are summarized in Table 2. Different combi-
nations are further tested in order to observe the contribution of each data feature.

2.2.2 Gradient boosting

In this research, a gradient boosting classifier16 originally proposed by Friedman17,18 is used for the imple-
mentation of our computer-aided detection and diangosis (CAD) system for PCa. Gradient boosting is in fact a
reformulation of the well-known AdaBoost19 in which the problem of finding “boots” is tackled as a numerical op-
timization. In a greedy manner, a strong classifier is constructed by iteratively finding the best pair of real-valued
weak learner function (e.g., regression trees) and its corresponding weight which minimize a given differentiable
loss function. This minimization can be carried out via gradient descent or quadratic approximation.20



Table 2: Overview of the different combinations of features tested for the classification.

Voxel-based VT2-W VADC VDCE VPZ VCG Texton-based TT2-W TADC TDCE TPZ TCG

V1 3 7 7 7 7 T1 3 7 7 7 7

V2 7 3 7 7 7 T2 7 3 7 7 7

V3 7 7 3 7 7 T3 7 7 3 7 7

V4 3 3 7 7 7 T4 3 3 7 7 7

V5 3 7 3 7 7 T5 3 7 3 7 7

V6 7 3 3 7 7 T6 7 3 3 7 7

V7 3 3 3 7 7 T7 3 3 3 7 7

V8 3 3 3 3 3 T8 3 3 3 3 3

The size of the feature vectors extracted for classification is problematic and it can lead to the non con-
vergence of some well-known classification method such as SVM.21 Unlike SVM, boosting leads to consistent
classification, even with early-stopping conditions.22 Furthermore, gradient boosting has been proved to outper-
form AdaBoost23 motivating our choice for this specific classifier. In this work, the weak learner function used
is the regression trees while the loss function is an exponential loss.

2.2.3 Validation model

All the different combinations reported in Table 2 were classified using a ten-fold cross-validation procedure, of
which nine-fold were used as training samples and one-fold was kept as testing samples and the experiments were
repeated for ten iterations.

3. RESULTS AND DISCUSSION

The classification results obtained are given in terms of sensitivity and specificity and depicted in Fig. 2. Sub-
sequently, further analysis in terms of Receiver Operating Characteristic (ROC) curves and Area Under Curve
(AUC) is shown in Fig. 3.

The best classification performance is achieved using the 3D texton-based extraction strategy and a combi-
nation of the three different modalities and the zonal information. The sensitivity and specificity obtained are
94.7% and 93.0%, respectively and an AUC of 0.986.

Analyzing the classification outcomes of each single modality, the DCE MRI is the most discriminative feature
with superior performance than the combination of T2-W MRI and ADC map together. However, the two latter
mentioned modalities provide relevant information since that the combination of the three of them enhances the
reported sensitivity and specificity.

Integrating information about the prostate zones (i.e., PZ and CG) boosts the classification performance.
More precisely, this feature allows to improve greatly the specificity and slightly the sensitivity.

In overall, the 3D texton-based strategy leads to better classification results while compared with the voxel-
based strategy for all the mono and multi-parametric combinations experimented. Thus, integrating spatial
information about the neighborhood of a given voxel leads to drastic improvements.

4. CONCLUSION

In this study, an exhaustive analysis of classification of 3T multi-parametric MRI data using a gradient boosting
classifier has been carried out. The best classification performances are obtained by extracting the features using
a 3D texton-based strategy and using the information from all the modalities as well as the zonal information.
A maximum sensitivity and specificity of 86.9% and 84.6% respectively as well as an AUC of 0.935, are reached.
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Figure 2: Graphical and numerical comparisons between the combination of features introduced in Table 2 in
terms of sensitivity and specificity are illustrated in blue and red, respectively.
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(b) ROC curves for 3D texton-based approach.

Figure 3: ROC curves for the both voxel-based and 3D texton-based approaches with different multi-parametric
MRI combinations.

Two avenues for future research can be explored. First, the registration and segmentation of the multi-
parametric data24,25 has been discarded and could be performed ahead of the classification to study the possible
improvements implied using in-house developed methods.26,27 Then, other features than intensities could be
extracted and the results could be compared with the described experiments here, since the dataset used is
public.
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