Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Tackling the Problem of Data Imbalancing for Melanoma Classification

Abstract : Malignant melanoma is the most dangerous type of skin cancer, yet melanoma is the most treatable kind of cancer when diagnosed at an early stage. In this regard, Computer-Aided Diagnosis systems based on machine learning have been developed to discern melanoma lesions from benign and dysplastic nevi in dermoscopic images. Similar to a large range of real world applications encountered in machine learning, melanoma classification faces the challenge of imbalanced data, where the percentage of melanoma cases in comparison with benign and dysplastic cases is far less. This article analyzes the impact of data balancing strategies at the training step. Subsequently, Over-Sampling (OS) and Under-Sampling (US) are extensively compared in both feature and data space, revealing that NearMiss-2 (NM2) outperform other methods achieving Sensitivity (SE) and Specificity (SP) of 91.2% and 81.7%, respectively. More generally, the reported results highlight that methods based on US or combination of OS and US in feature space outperform the others.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger
Contributeur : Guillaume Lemaitre Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 janvier 2016 - 14:29:26
Dernière modification le : vendredi 5 août 2022 - 14:54:00
Archivage à long terme le : : jeudi 7 avril 2016 - 15:23:42


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01250949, version 1


Mojdeh Rastgoo, Guillaume Lemaître, Joan Massich, Olivier Morel, Franck Marzani, et al.. Tackling the Problem of Data Imbalancing for Melanoma Classification. Bioimaging, Feb 2016, Rome, Italy. ⟨hal-01250949⟩



Consultations de la notice


Téléchargements de fichiers