Classification of SD-OCT Volumes using Local Binary Patterns: Experimental Validation for DME Detection - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Ophthalmology Année : 2016

Classification of SD-OCT Volumes using Local Binary Patterns: Experimental Validation for DME Detection

(1) , (1) , (1) , (2) , (2) , (2) , (2) , (3, 1) , (1)
1
2
3

Résumé

This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of pre-processing is inconsistent with respect to different classifiers and feature configurations.
Fichier principal
Vignette du fichier
main.pdf (3 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01320791 , version 1 (24-05-2016)

Identifiants

  • HAL Id : hal-01320791 , version 1

Citer

Guillaume Lemaître, Mojdeh Rastgoo, Joan Massich, Carol Y. Cheung, Tien y Wong, et al.. Classification of SD-OCT Volumes using Local Binary Patterns: Experimental Validation for DME Detection. Journal of Ophthalmology, 2016, 2016. ⟨hal-01320791⟩
210 Consultations
209 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More