Classification of SD-OCT Volumes using Local Binary Patterns: Experimental Validation for DME Detection

Abstract : This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of pre-processing is inconsistent with respect to different classifiers and feature configurations.
Type de document :
Article dans une revue
Journal of Ophthalmology, Hindawi Publishing Corporation, 2016, 2016
Liste complète des métadonnées


https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01320791
Contributeur : Guillaume Lemaitre <>
Soumis le : mardi 24 mai 2016 - 14:08:43
Dernière modification le : vendredi 27 mai 2016 - 01:01:40

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01320791, version 1

Collections

Citation

Guillaume Lemaitre, Mojdeh Rastgoo, Joan Massich, Carol Y. Cheung, Tien Y Wong, et al.. Classification of SD-OCT Volumes using Local Binary Patterns: Experimental Validation for DME Detection. Journal of Ophthalmology, Hindawi Publishing Corporation, 2016, 2016. <hal-01320791>

Partager

Métriques

Consultations de
la notice

110

Téléchargements du document

65