S. Sharma, A. Oliver-hernandez, W. Liu, and J. Walt, The impact of diabetic retinopathy on health-related quality of life, Current Opinion in Ophthalmology, vol.16, issue.3, pp.155-159, 2005.
DOI : 10.1097/01.icu.0000161227.21797.3d

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, vol.27, issue.5, pp.1047-1053, 2004.
DOI : 10.2337/diacare.27.5.1047

M. R. Mookiah, U. R. Acharya, C. K. Chua, C. M. Lim, E. Ng et al., Computer-aided diagnosis of diabetic retinopathy: A review, Computers in Biology and Medicine, vol.43, issue.12, pp.2136-2155, 2013.
DOI : 10.1016/j.compbiomed.2013.10.007

E. Trucco, A. Ruggeri, T. Karnowski, L. Giancardo, E. Chaum et al., Validating Retinal Fundus Image Analysis Algorithms: Issues and a Proposal, Investigative Opthalmology & Visual Science, vol.54, issue.5, pp.3546-3569, 2013.
DOI : 10.1167/iovs.12-10347

URL : https://hal.archives-ouvertes.fr/hal-00824593

Y. T. Wang, M. Tadarati, Y. Wolfson, S. B. Bressler, and N. M. Bressler, Comparison of Prevalence of Diabetic Macular Edema Based on Monocular Fundus Photography vs Optical Coherence Tomography, JAMA Ophthalmology, vol.134, issue.2, pp.355-2015
DOI : 10.1001/jamaophthalmol.2015.5332

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt et al., Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation, Optics Express, vol.18, issue.18, pp.19413-19428, 2010.
DOI : 10.1364/OE.18.019413

R. Kafieh, H. Rabbani, M. D. Abramoff, and M. Sonka, Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map, Medical Image Analysis, vol.17, issue.8, pp.907-928, 2013.
DOI : 10.1016/j.media.2013.05.006

S. Izatt and . Farsiu, Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography 365 images, Biomedical Optical Express, vol.5, issue.10, pp.3568-3577, 2014.

F. G. Venhuizen, B. Van-ginneken, B. Bloemen, M. J. Van-grisven, R. Philipsen et al., Automated age-related macular degeneration classification in OCT using unsupervised feature learning Automated macular pathology diagnosis in retinal oct images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding, SPIE Medical Imaging Medical Image Analysis, vol.941412, issue.15, pp.94141-748, 2011.

G. Lemaitre, M. Rastgoo, J. Massich, S. Sankar, F. Meriaudeau et al., 375 Classification of SD-OCT volumes with LBP: Application to dme detection, Medical Image Computing and Computer-Assisted Intervention (MICCAI), Ophthalmic Medical Image Analysis Workshop (OMIA), 2015.

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, pp.1470-1477, 2003.
DOI : 10.1109/ICCV.2003.1238663

J. M. Schmitt, S. H. Xiang, and K. M. Yung, Speckle in Optical Coherence Tomography, Journal of Biomedical Optics, vol.4, issue.1, pp.95-105, 1999.
DOI : 10.1117/1.429925

A. Buades, B. Coll, and J. Morel, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

P. Coupe, P. Hellier, C. Kervrann, and C. Barillot, Nonlocal Means-Based Speckle Filtering for Ultrasound Images, IEEE Transactions on Image Processing, vol.18, issue.10, pp.2221-2229, 2009.
DOI : 10.1109/TIP.2009.2024064

URL : https://hal.archives-ouvertes.fr/inserm-00428524

T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, Pattern 390 Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.7, pp.971-987, 2002.

G. Zhao, T. Ahonen, J. Matas, and M. Pietikäinen, Rotation-invariant image and video description with local binary pattern features, Image Processing, IEEE Transactions on, vol.21, issue.4, pp.1465-1477, 2012.

]. D. Cox, The regression analysis of binary sequences, Journal of the Royal Statistical Society. Series B (Methodological), pp.395-215, 1958.

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

J. H. Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis, vol.38, issue.4, pp.367-378, 2002.
DOI : 10.1016/S0167-9473(01)00065-2

D. Walker, F. Sidibe, and . Meriaudeau, A boosting approach for prostate cancer detection using multi-parametric mri, International Conference on Quality Control and Artificial Vision (QCAV2015), SPIE, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235890

V. Vapnik and A. J. Lerner, Generalized portrait method for pattern recogni- 405 tion, Automation and Remote Control, vol.24, issue.6, pp.774-780, 1963.

A. Aizerman, E. M. Braverman, and L. I. Rozoner, Theoretical foundations of the potential function method in pattern recognition learning, Automation and Remote Control, vol.25, pp.821-837, 1964.

E. Nowak, F. Jurie, and B. Triggs, Sampling strategies for bag-of-features image 410 classification, in: Computer Vision?ECCV, pp.490-503, 2006.

D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.

M. Garvin, M. Abramoff, X. Wu, S. Russell, T. Burns et al., Automated 3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography images, Medical Imaging, IEEE Transactions on, vol.28, issue.9, pp.1436-1447, 2009.