On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA

Abstract : Visual saliency is an attention mechanism which helps to focus on regions of interest instead of processing the whole image or video data. Detecting salient objects in still images has been widely addressed in literature with several formulations and methods. However, visual saliency detection in videos has attracted little attention, although motion information is an important aspect of visual perception. A common approach for obtaining a spatio-temporal saliency map is to combine a static saliency map and a dynamic saliency map. In this paper, we extend a recent saliency detection approach based on principal component analysis (PCA) which have shwon good results when applied to static images. In particular, we explore different strategies to include temporal information into the PCA-based approach. The proposed models have been evaluated on a publicly available dataset which contain several videos of dynamic scenes with complex background, and the results show that processing the spatio-tempral data with multilinear PCA achieves competitive results against state-of-the-art methods.
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition, Dec 2016, CANCUN, Mexico
Liste complète des métadonnées


https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01390675
Contributeur : Désiré Sidibé <>
Soumis le : mercredi 2 novembre 2016 - 12:01:36
Dernière modification le : samedi 5 novembre 2016 - 01:01:53
Document(s) archivé(s) le : vendredi 3 février 2017 - 13:06:39

Fichier

ICPR16_0156_FI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01390675, version 1

Collections

Citation

Désiré Sidibé, Mojdeh Rastgoo, Fabrice Mériaudeau. On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA. International Conference on Pattern Recognition, Dec 2016, CANCUN, Mexico. <hal-01390675>

Partager

Métriques

Consultations de
la notice

51

Téléchargements du document

55