G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.314, issue.7121, pp.860-867, 2006.
DOI : 10.1074/jbc.M411860200

G. S. Hotamisligil, Inflammation and endoplasmic reticulum stress in obesity and diabetes, International Journal of Obesity, vol.3, pp.52-54238, 2008.
DOI : 10.1126/science.1128294

C. K. Lam, M. Chari, and T. K. Lam, CNS Regulation of Glucose Homeostasis, Physiology, vol.24, issue.3, pp.159-170, 2009.
DOI : 10.1152/physiol.00003.2009

URL : http://physiologyonline.physiology.org/content/nips/24/3/159.full.pdf

C. Knauf, Brain Glucagon-Like Peptide 1 Signaling Controls the Onset of High-Fat Diet-Induced Insulin Resistance and Reduces Energy Expenditure, Endocrinology, vol.149, issue.10, pp.4768-4777, 2008.
DOI : 10.1210/en.2008-0180

URL : https://hal.archives-ouvertes.fr/inserm-00409099

D. Cai and T. Liu, Inflammatory cause of metabolic syndrome via brain stress and NF-??B, Aging, vol.4, issue.2, pp.98-115, 2012.
DOI : 10.18632/aging.100431

A. P. Arruda, Low-Grade Hypothalamic Inflammation Leads to Defective Thermogenesis, Insulin Resistance, and Impaired Insulin Secretion, Endocrinology, vol.152, issue.4, pp.1314-13262010, 1210.
DOI : 10.1210/en.2010-0659

URL : https://academic.oup.com/endo/article-pdf/152/4/1314/9038402/endo1314.pdf

A. P. Arruda, M. Milanski, and L. A. Velloso, Hypothalamic inflammation and thermogenesis: the brown adipose tissue connection, Journal of Bioenergetics and Biomembranes, vol.135, issue.Suppl 2, pp.53-58, 2011.
DOI : 10.1016/j.cell.2008.07.043

T. Duparc, Jejunum Inflammation in Obese and Diabetic Mice Impairs Enteric Glucose Detection and Modifies Nitric Oxide Release in the Hypothalamus, Antioxidants & Redox Signaling, vol.14, issue.3, pp.415-4233330, 2010.
DOI : 10.1089/ars.2010.3330

URL : https://hal.archives-ouvertes.fr/inserm-00550864

K. Tatemoto, Isolation and Characterization of a Novel Endogenous Peptide Ligand for the Human APJ Receptor, Biochemical and Biophysical Research Communications, vol.251, issue.2, pp.471-4769489, 1998.
DOI : 10.1006/bbrc.1998.9489

A. Reaux, K. Gallatz, M. Palkovits, and C. Llorens-cortes, Distribution of apelin-synthesizing neurons in the adult rat brain, Neuroscience, vol.113, issue.3, pp.653-662, 2002.
DOI : 10.1016/S0306-4522(02)00192-6

C. Dray, Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice, Cell Metabolism, vol.8, issue.5, pp.437-445003, 2008.
DOI : 10.1016/j.cmet.2008.10.003

URL : https://hal.archives-ouvertes.fr/inserm-00408948

A. Drougard, Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes, Antioxidants & Redox Signaling, vol.20, issue.4, pp.557-5735182, 2014.
DOI : 10.1089/ars.2013.5182

URL : https://hal.archives-ouvertes.fr/hal-01211084

C. Knauf, A. Drougard, A. Fournel, T. Duparc, and P. Valet, Hypothalamic Actions of Apelin on Energy Metabolism: New Insight on Glucose Homeostasis and Metabolic Disorders, Hormone and Metabolic Research, vol.45, issue.13, pp.928-934, 2013.
DOI : 10.1055/s-0033-1351321

A. Fournel, D. A. Duparc, T. Marlin, A. Brierley, S. M. Castro et al., Apelin targets gut contraction to control glucose metabolism via the brain, Gut, vol.25, issue.2
DOI : 10.1111/nmo.12152

S. Y. Lv, Central apelin-13 inhibits food intake via the CRF receptor in mice, Peptides, vol.33, issue.1, pp.132-138, 2012.
DOI : 10.1016/j.peptides.2011.11.011

S. Taheri, The Effects of Centrally Administered Apelin-13 on Food Intake, Water Intake and Pituitary Hormone Release in Rats, Biochemical and Biophysical Research Communications, vol.291, issue.5, pp.1208-12126575, 2002.
DOI : 10.1006/bbrc.2002.6575

A. Valle, N. Hoggard, A. C. Adams, P. Roca, and J. Speakman, Chronic central administration of apelin-13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice, Scientific RepoRts | J Neuroendocrinol, vol.6, issue.20, pp.31849-31859, 2008.

R. Goazigo and A. , Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic ??-MSH release, AJP: Endocrinology and Metabolism, vol.301, issue.5, pp.955-966, 2011.
DOI : 10.1152/ajpendo.00090.2011

L. Geurts, Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota, Nature Communications, vol.60, issue.6495, pp.10-1038, 2015.
DOI : 10.2337/db11-0227

URL : http://www.nature.com/articles/ncomms7495.pdf

A. Hamann, Characterization of Insulin Resistance and NIDDM in Transgenic Mice With Reduced Brown Fat, Diabetes, vol.44, issue.11, pp.1266-1273, 1995.
DOI : 10.2337/diab.44.11.1266

C. J. De-souza, M. F. Hirshman, and E. S. Horton, CL-316,243, a beta3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats, Diabetes, vol.46, issue.8, pp.1257-1263, 1997.
DOI : 10.2337/diabetes.46.8.1257

V. Peirce and A. Vidal-puig, Regulation of glucose homoeostasis by brown adipose tissue, The Lancet Diabetes & Endocrinology, vol.1, issue.4, pp.353-360, 2013.
DOI : 10.1016/S2213-8587(13)70055-X

Y. C. Shi, Arcuate NPY Controls Sympathetic Output and BAT Function via a Relay of Tyrosine Hydroxylase Neurons in the PVN, Cell Metabolism, vol.17, issue.2, pp.236-248006, 2013.
DOI : 10.1016/j.cmet.2013.01.006

R. Orozco-solis, The Circadian Clock in the Ventromedial Hypothalamus Controls Cyclic Energy Expenditure, Cell Metabolism, vol.23, issue.3, pp.467-478, 2016.
DOI : 10.1016/j.cmet.2016.02.003

L. K. Burke, Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons. Molecular metabolism 5, pp.245-252005, 2016.

M. Schneeberger, A. G. Gomez-valades, S. Ramirez, R. Gomis, and M. Claret, Hypothalamic miRNAs: emerging roles in energy balance control, Frontiers in Neuroscience, vol.3, issue.175, p.41, 2015.
DOI : 10.1371/journal.pbio.0030415

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325937

V. T. Samuel and G. Shulman, Mechanisms for Insulin Resistance: Common Threads and Missing Links, Cell, vol.148, issue.5, pp.852-871017, 2012.
DOI : 10.1016/j.cell.2012.02.017

URL : http://doi.org/10.1016/j.cell.2012.02.017

A. Than, Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes, Journal of Biological Chemistry, vol.78, issue.23, pp.14679-14691643817, 2015.
DOI : 10.1016/j.lfs.2006.03.040

C. Contreras, The brain and brown fat, Annals of Medicine, vol.15, issue.1, pp.150-168919727, 2015.
DOI : 10.1016/j.cmet.2012.01.021

A. Drougard, A. Fournel, P. Valet, and C. Knauf, Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake, Frontiers in Neuroscience, vol.91, issue.56, p.56, 2015.
DOI : 10.1161/01.RES.0000043501.47934.FA

T. Duparc, a Nitric Oxide-Dependent Pathway in Mice, Antioxidants & Redox Signaling, vol.15, issue.6, pp.1477-14963454, 2010.
DOI : 10.1089/ars.2010.3454

URL : https://hal.archives-ouvertes.fr/inserm-00617581

L. Geurts, A. M. Neyrinck, N. M. Delzenne, C. Knauf, and P. Cani, Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics, Beneficial Microbes, vol.295, issue.Suppl. 7, pp.3-17, 2014.
DOI : 10.1152/ajpendo.90637.2008

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:134625&datastream=PDF_01&disclaimer=2d0141b849c8bfa9c463768c8ffb57f153aaf9fa748972c450526e7553a43acc

L. Chen, Y. Tao, and Y. Jiang, Apelin activates the expression of inflammatory cytokines in microglial BV2 cells via PI-3K/Akt and MEK/Erk pathways, Science China Life Sciences, vol.298, issue.6, pp.531-540, 2015.
DOI : 10.1126/science.1072682

E. D. Rosen and B. M. Spiegelman, What We Talk About When We Talk About Fat, Cell, vol.156, issue.1-2, pp.20-44012, 2014.
DOI : 10.1016/j.cell.2013.12.012

URL : http://doi.org/10.1016/j.cell.2013.12.012

P. Puigserver, Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-??, International Journal of Obesity, vol.29, pp.5-9, 2005.
DOI : 10.1038/sj.ijo.0802905

P. Seale, Transcriptional Control of Brown Fat Determination by PRDM16, Cell Metabolism, vol.6, issue.1, pp.38-54, 2007.
DOI : 10.1016/j.cmet.2007.06.001

URL : https://hal.archives-ouvertes.fr/inserm-00409781

C. Foussal, Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy, FEBS Letters, vol.283, issue.11, pp.2363-2370025, 2010.
DOI : 10.1074/jbc.M706466200

URL : https://hal.archives-ouvertes.fr/inserm-00505022

M. Sawane, H. Kidoya, F. Muramatsu, N. Takakura, and K. Kajiya, Apelin attenuates UVB-induced edema and inflammation by promoting vessel function. The American journal of pathology 179, pp.2691-2697, 2011.
DOI : 10.1016/j.ajpath.2011.08.024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260839

N. J. Leeper, Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation, AJP: Heart and Circulatory Physiology, vol.296, issue.5, pp.1329-1335, 2008.
DOI : 10.1152/ajpheart.01341.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685356

L. Geurts, Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue, Frontiers in Microbiology, vol.2, issue.149, p.149, 2011.
DOI : 10.3389/fmicb.2011.00149

URL : https://hal.archives-ouvertes.fr/inserm-00617647

C. Cearley, L. Churchill, and J. M. Krueger, Time of day differences in IL1?? and TNF?? mRNA levels in specific regions of the rat brain, Neuroscience Letters, vol.352, issue.1, pp.61-63, 2003.
DOI : 10.1016/j.neulet.2003.07.019

L. K. Fonken, Microglia inflammatory responses are controlled by an intrinsic circadian clock, Brain, Behavior, and Immunity, vol.45, pp.171-179, 2015.
DOI : 10.1016/j.bbi.2014.11.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386638

G. J. Schwartz, Gut fat sensing in the negative feedback control of energy balance ??? Recent advances, Physiology & Behavior, vol.104, issue.4, pp.621-623, 2011.
DOI : 10.1016/j.physbeh.2011.05.003

D. D. Wadikar and K. S. Premavalli, Appetite control and obesity. Critical reviews in food science and nutrition 52, pp.949-956514757, 2010.
DOI : 10.1080/10408398.2010.514757

J. W. Sohn and K. W. Williams, Functional Heterogeneity of Arcuate Nucleus Pro-Opiomelanocortin Neurons: Implications for Diverging Melanocortin Pathways, Molecular Neurobiology, vol.30, issue.7, pp.225-233, 2012.
DOI : 10.1523/JNEUROSCI.3118-09.2010

F. Zhang, Apelin-13 and APJ in paraventricular nucleus contribute to hypertension via sympathetic activation and vasopressin release in spontaneously hypertensive rats, Acta Physiologica, vol.63, issue.1, pp.17-27, 2014.
DOI : 10.1161/HYPERTENSIONAHA.113.01681

M. N. Brito, N. A. Brito, D. J. Baro, C. K. Song, and T. J. Bartness, Differential Activation of the Sympathetic Innervation of Adipose Tissues by Melanocortin Receptor Stimulation, Endocrinology, vol.148, issue.11, pp.5339-5347, 2007.
DOI : 10.1210/en.2007-0621

C. Attane, Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice, Diabetes, vol.61, issue.2, pp.310-320, 2012.
DOI : 10.2337/db11-0100

URL : https://hal.archives-ouvertes.fr/hal-00723095

R. J. Perry, Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes, Cell, vol.160, issue.4, pp.745-758012, 2015.
DOI : 10.1016/j.cell.2015.01.012

URL : http://doi.org/10.1016/j.cell.2015.01.012

C. Chaves-almagro, Apelin receptors: From signaling to antidiabetic strategy, European Journal of Pharmacology, vol.763, pp.149-159017, 2015.
DOI : 10.1016/j.ejphar.2015.05.017

B. Masri, C. Dray, C. Knauf, P. Valet, and I. Castan-laurell, The APJ receptor: a new therapeutic approach in diabetic treatment, Med Sci, vol.31, pp.275-281, 2015.

A. L. Poher, J. Altirriba, C. Veyrat-durebex, and F. Rohner-jeanrenaud, Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance, Frontiers in Physiology, vol.125, issue.2, 2015.
DOI : 10.1007/s00508-013-0431-2

D. Richard and F. Picard, Brown fat biology and thermogenesis, Frontiers in Bioscience, vol.16, issue.1, pp.1233-1260, 2011.
DOI : 10.2741/3786

Z. Arany, Transcriptional coactivator PGC-1?? controls the energy state and contractile function of cardiac muscle, Cell Metabolism, vol.1, issue.4, pp.259-271002, 2005.
DOI : 10.1016/j.cmet.2005.03.002

Z. Wu and O. Boss, Targeting PGC-1?? to control energy homeostasis, Expert Opinion on Therapeutic Targets, vol.39, issue.10, pp.1329-1338, 2007.
DOI : 10.1146/annurev.genet.39.110304.095751

T. Goto, Proinflammatory cytokine interleukin-1?? suppresses cold-induced thermogenesis in adipocytes, Cytokine, vol.77, pp.107-114, 2016.
DOI : 10.1016/j.cyto.2015.11.001

L. Geurts, A. Everard, P. Le-ruyet, N. M. Delzenne, and P. D. Cani, Ripened Dairy Products Differentially Affect Hepatic Lipid Content and Adipose Tissue Oxidative Stress Markers in Obese and Type 2 Diabetic Mice, Journal of Agricultural and Food Chemistry, vol.60, issue.8, pp.31849-31859, 2012.
DOI : 10.1021/jf204916x

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:117807&datastream=PDF_01&disclaimer=5389a5419158a9ff4d833aa22ce7278aa07f4737a4c45dc21a816a38ba52880f

A. Everard, L. Geurts, M. Van-roye, N. M. Delzenne, and P. D. Cani, Tetrahydro iso-Alpha Acids from Hops Improve Glucose Homeostasis and Reduce Body Weight Gain and Metabolic Endotoxemia in High-Fat Diet-Fed Mice, PLoS ONE, vol.293, issue.3, 2012.
DOI : 10.1371/journal.pone.0033858.s001

URL : http://doi.org/10.1371/journal.pone.0033858

M. D. Al-bader and H. A. Sarraf, Housekeeping gene expression during fetal brain development in the rat???validation by semi-quantitative RT-PCR, Developmental Brain Research, vol.156, issue.1, pp.38-45, 2005.
DOI : 10.1016/j.devbrainres.2005.01.010

X. Fioramonti, Characterization of Glucosensing Neuron Subpopulations in the Arcuate Nucleus: Integration in Neuropeptide Y and Pro-Opio Melanocortin Networks?, Diabetes, vol.56, issue.5, pp.1219-1227, 2007.
DOI : 10.2337/db06-0567