Fermentation of cow milk and/or pea milk mixtures by different starter cultures: Physico-chemical and sensorial properties
Manhal Yousseef, Céline Lafarge, Dominique Valentin, Samuel Lubbers, Florence Husson

To cite this version:
Manhal Yousseef, Céline Lafarge, Dominique Valentin, Samuel Lubbers, Florence Husson. Fermentation of cow milk and/or pea milk mixtures by different starter cultures: Physico-chemical and sensorial properties. LWT - Food Science and Technology, Elsevier, 2016, 69, pp.430-437. 10.1016/j.lwt.2016.01.060. hal-01396424

HAL Id: hal-01396424
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01396424
Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fermentation of cow milk and/or pea milk mixtures by different starter cultures: Physico-chemical and sensorial properties

Manhal Youssef a, Céline Lafarge a, Dominique Valentin b, Samuel Lubbers a, 1, Florence Husson a, *

a UMR Procédés Alimentaires et Microbiologiques A 02.102, AgroSup Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France

b Centre des Sciences du Goût et de l’Alimentation, UMR6265 CNRS, INRA, Université de Bourgogne, 9E Boulevard Jeanne d’Arc, 21000 Dijon, France

Keywords: Pea protein
Cow milk protein
Lactic acid bacteria
Rheology
Sensory properties

Five mixtures of milk and pea protein (0–40 g pea protein/100 g total protein) were fermented by ten starter cultures of lactic acid bacteria (LAB) 2 to select the cocktails that can lead to products similar to a conventional yoghurt. Generally speaking, an increase in pea concentration leads to products with higher acidity, higher syneresis and lower firmness. From the sensory perspective, up to 30 g pea protein/100 g total protein, starter cultures show either positive or negative effects. A principal component analysis (PCA) 3 and a hierarchical cluster analysis (HCA) 4 carried out on all variables revealed five groups of products. Two groups of products of 0 g or 10 g pea protein/100 g total protein seemed to be the most similar to conventional dairy products. The third group included products fermented with two starters with negative characteristics such as astringency and bitterness. The last two groups included members made of 10 g, 20 g, 30 g and 40 g pea protein/100 g total protein, among them one group showing a positive sensory profile. From this group, four starter cultures seem promising for the fermentation of milk and pea protein mixtures.

1. Introduction

The use of plant proteins, especially pulse proteins, to extend or substitute for animal-derived products is one way to guarantee food security, sustainable production in environmental safety and health benefits (Boland et al., 2013). Successful uses of plant proteins as food ingredients depend on their functional characteristics and their sensory impacts in the final products. The positive functional properties (gelation, emulsification, foaming ...) of this protein source make it a promising food ingredient (Boye, Zare, & Pletch, 2010; Ma et al., 2011; Swanson, 1990). One of the major pulses is pea (Pisum sativum L.). Peas are usually consumed as seed, flour, protein isolate (Aiking, de Boer, & Vereijken, 2006). Pea protein is easily digestible and has a high-quality amino acid profile as well as high lysine and arginine content (Schneider & Lacampagne, 2000), but their use is limited by undesirable sensory characteristics. The main perceived compounds in pea odor profile are described as ‘green’, ‘grassy’, ‘hay-like’, ‘pea pod’ and are generated by degradation of fatty acids during extraction processes or by microbial activity on seed during storage (Hansen, Jakobsen, & Christensen, 2000; Murat, Bard, Dhalleine, & Cayot, 2013). Lactic acid fermentation with selected starter cultures could improve the organoleptic characteristics of foodstuff containing pea proteins. The LAB species like Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus acidophilus, Lactobacillus helveticus ... have shown positive effects on the organoleptic properties of fermented products in terms of flavor and texture (El Soda, Abd El Wahab, Ezzat, Desmazeaud, & Ismail, 1986; Marilley, Ampuero, Zesiger, & Casey, 2004; Moslehishad, Mirdamadi, Mirdamadi, Ehsani, Ezzatpanah, & Moosavi-Movahedi, 2013). Furthermore, exopolysaccharide production has been reported in most of these LAB species, which increase the viscosity and firmness, and improve the texture of yoghurts (Leroy & De Vuyst, 2004; Ruas-Madiedo, Hugenholtz, & Zoon, 2002). Mixed cultures have been

Abbreviations: LAB, lactic acid bacteria; PCA, principal component analysis; HCA, hierarchical cluster analysis; V.max, maximum acidification rate; T.end, the time necessary to reach pH 4.7; pH.12 h, the pH after 12 h of fermentation; ANOVA, analysis of variance; LSD, least significant difference.

* Corresponding author.

E-mail address: florence.husson@u-bourgogne.fr (F. Husson).

1 Co-last author.

2 Lactic acid bacteria.

3 Principal component analysis.

4 Hierarchical cluster analysis.
shown to reduce more lactose in fermented soymilks than a single strain, although sometimes single cultures reduce pH more than mixed cultures (Wang, Yu, & Chou, 2002). Acidification by *S. thermophilus* of soy beverage was faster than that of milk, but the combination of *S. thermophilus* and different LAB strains did not lead to faster acidification in soy beverage, contrary to what was observed in milk, where symbiosis seems to occur (Champagne, Green-Johnson, Raymond, Barrette, & Buckley, 2009). Studies performed on fermented milk supplemented with a small quantity of plant protein (up to 5%) showed positive effects on textural and rheological properties of gels, both with soy protein (Drake, Chen, Tamarapu, & Leenannon, 2000) and lentil flour (Zare, Boye, Orsat, Champagne, & Simpson, 2011). On the other hand, negative sensory effects have been noted in products supplemented with plant proteins. The substitution of 50% or more cow milk by soya milk in fermented milk products led to a decrease in liking that might be due, in part, to the fact that consumers were expecting the fermented milk product to taste like a regular yoghurt (Tu, Valentin, Husson, & Dacremont, 2010). This last observation reveals the difficulty of assessing a new product (mixed soy and milk) when it is similar to a well-identified reference, in this case, conventional cow’s milk yoghurt.

The aim of this study is to screen 10 starter cultures of seven LAB species for the fermentation of five ratios of cow protein/pea protein from 0 to 40 g pea protein/100 g total protein, in order to determine the combination of starter culture and pea concentration which gives the end product the closest to a traditional yoghurt in terms of physico-chemical and sensory attributes. The pH reduction during fermentation, titratable acidity, syneresis and texture properties of the final product after one, seven and 14 days of storage at 4 °C were measured. Finally, a standard descriptive analysis approach was used to compare the sensory profiles of these products with that of a cow’s milk yoghurt fermented with commercial milk ferment.

2. Materials and methods

2.1. Ingredients and cultures

The pea protein isolate Nutralys® S85F was supplied by Roquette (Lestrem, France) and skim milk powder was purchased from Régilait (Saint-Martin-Belle-Roche, France). Lactose monohydrate, sodium citrate and calcium phosphate monobasic were purchased from Sigma (St. Louis, USA). A homemade yoghurt set containing lyophilized *S. thermophilus* and *Lactobacillus bulgaricus* were used as a reference (Alsa, Rueil-Malmaison, France). *S. thermophilus* 102303T, *L. delbrueckii* subsp. *bulgaricus* 104365, *L. acidophilus* 76.13, *L. helveticus* CNRZ 303 and *Lactobacillus casei* subsp. *casei* ATC 334 were obtained from our laboratory collection. *Lactobacillus rhamnosus* CRBP 24.130 and *Lactobacillus fermentum* CRBP 24.11 were obtained from the Pasteur Institute laboratories (Paris, France). Each activated culture was inoculated into MRS (Biokar Diagnostics, Beauvais, France), except for *S. thermophilus* inoculated in M17 and incubated at 37 °C for 12 h. These cultures were then diluted to 10² CFU/mL with 9 g/L sterilized NaCl solution and used as the inoculum of each LAB.

2.2. Preparation of milks and fermented products

The total amount of proteins was fixed at 4.5 g/100 g of fermented product. Therefore, the concentration in pea proteins were 0, 0.45, 0.9, 1.35 and 1.8 g/100 g of fermented product. The mixtures of cow and pea milk, prepared as illustrated in Fig. 1, were inoculated with different starter cultures (Table 1), sampled in plastic flasks (40 mL in 45 mL flasks) and incubated at 37 °C for 24 h and stored at 4 °C.

2.3. Product characterization

2.3.1. pH and titratable acidity measurements

Changes in pH values during fermentation were determined every 2 h at room temperature using a calibrated pH electrode and a pH-meter (Vision 6071, JENCO Electronics LTD, Shanghai, China). Three kinetic parameters were calculated from the curve $\text{pH} = f(t)$, using Eq. (1):

$$V_{\text{max}} = \left(\frac{\text{d pH}}{\text{d t}}\right)$$

where V_{max} is the maximum acidification rate (mUnit pH/min), t_{end} was the time necessary to reach pH 4.7 (hours); the value pH 4.7 was chosen because it is the pH at which gels begin to form. The value pH.12 h was the pH obtained after 12 h of fermentation (Unit pH); 12 h was selected because there were significant differences in pH values among the different mixtures (cow milk and pea milk) in most of the studied cultures. Titratable acidity was determined according to the Dornic degree (D°) method (Robinson & Wilbey, 1998). Three replicate experiments were carried out for each fermentation.

2.3.2. Syneresis measurement

The degree of whey separation was determined according to a siphon method (Amatayakul, Sherkat, & Shah, 2006). Syneresis after one, seven and 14 days of storage at 4 °C was measured in triplicate and expressed as a percentage of total weight of the product.

2.3.3. Rheological analysis

Rheological characteristics were evaluated by Texture Analyzer TA.HD plus (Stable Micro Systems, Godalming, England) with Exponent software version 6. A single penetration test was performed using a cylindrical probe of 10 mm diameter, a 5 Kg-load cell with a return distance of 85 mm, a test speed of 1.00 mm/s and 9 mm as the distance of penetration. From the curve, four values were collected representing “Firmness”: maximum force value, “Consistency”: positive area under the curve, “Index of Viscosity/Consistency”: minimum force value and “Cohesiveness”: negative area under the curve. This test was performed in triplicate after one, seven and 14 days of storage at 4 °C.

2.3.4. Sensory evaluation

Ten training sessions were conducted with 12 panelists selected for their ability to detect tastes and odors in pea “yoghurt” as well as their verbal fluency. Two sessions were carried out to generate a preliminary list of attributes based on five samples selected from our products. This list was then reduced to obtain a final list based on the ISO 11035:1994 norm (ISO, 1994). The next four sessions were dedicated to training. Panelists agreed upon definitions, references and procedures for each attribute and were trained to rank different water and yoghurt solutions containing substances that conferred the required attributes. In the last three sessions, ten new products were presented in duplicate to determine whether the panel was homogeneous, discriminating and repeatable. Panelists had to rate the intensity of all attributes for each product on a structured interval scale ranging from 1 (low) to 10 (high). After

5 Maximum acidification rate.
6 The time necessary to reach pH 4.7.
7 The pH after 12 h of fermentation.
training, 10 trained panelists (two participants abandoned the panel due to availability issues) evaluated the 50 products in duplicate.

2.3.5. Statistical analysis

In order to estimate the significance of differences between means, factorial ANOVAs were conducted, followed by a LSD test at the 5% level with Statistica version 10 (StatSoft, Tulsa, USA). Additionally, a PCA and a HCA were conducted with SPAD version 8.0 (Coheris, Suresnes, France).

3. Results and discussion

3.1. Fermentative behavior

Determining the acidifying capacity of starter culture is the classical way to estimate its activity. In this study, three kinetic parameters were considered: V.max, T.end and pH.12 h. The results concerning the effects of pea concentration and starter culture on the kinetic parameters and Dornic degree are summarized in Table 2.

The maximum acidification rate ranged from 1.58 to 15.33 mUnit pH/min depending on pea ratio and bacteria cocktail. A minimum of 6.55 h was needed to obtain pH 4.7, and this was not obtained in six samples, even after 24 h of fermentation. In this case, when fermentation is slow or the time to reach the desired pH is over 24 h, it could be considered problematic for industrial applications as contamination may occur. According to Beal, Louvet, & Corrieu, 1989, a medium rate of acidification is preferable because it results in non-excessive acid production, a more homogeneous structure of the coagulum and a greater viscosity of the final product.

ANOVARs showed that pea concentration, starter culture and the interaction between the two factors have significant effects on the three parameters of kinetics and the Dornic degree (P < 0.05). Globally, an increase in pea milk ratio caused a decrease in the time required to obtain a gel and an increase in the products' acidity. However, the effect of pea ratio was not linear for all bacteria.
and syneresis. Thus, fast acidi-
cation did not produce a gel char-
pact did not produce a gel char-
factor cultures had signi-
ificant effects on syneresis (P < 0.05). Additionally, ANOVA showed that starter cultures, pea concentration and the interaction between them had significant effects on rheological parameters (P < 0.05). For purposes of clarity, only results concerning firmness after 14 days of storage at 4 °C are presented in Fig. 3. For all starter cultures, the presence of pea milk induced a decrease in firmness. The highest decrease in firmness was observed with the H starter culture in yoghurts without pea milk and in those with 40 g pea protein/100 g total protein at 14 days of storage. Fig. 4 shows the values of product firmness in the two extreme conditions: 0 and 40 g pea protein/100 g total protein, product firmness increased with storage time. The gain in firmness during storage from 1 to 14 days was important in starter cultures H, I, J, A and B. In the presence of 40 g pea protein/100 g total protein, product firmness was dramatically reduced. However, the gain in firmness during storage still occurred.

This increase in firmness can be explained by the post acidifi-
cation residual activity of lactic bacteria in the products. The lactic acid production and the ability of strains to produce exopoly-
saccharides leads to the stabilization of casein micelles and a
reinforcement of the strength of the protein network (Gazel-
Seydim, Seydim, & Seydim, 2005; Saint-Eve, Levy, Le Moigne, Ducruet, & Souchon, 2008). The presence of pea protein did not favor the firmness of the products. Pea proteins seemed to hinder the implementation of the casein network, given the assumption that the milk protein network (casein and whey) may be formed first. Thus, the coagulum of pea protein may settle into the free spaces in the casein network and weaken it. Indeed, the possible molecular interactions between pea globulins and casein are not clearly established in the literature. Especially in dairy products, the structure of the gel composed of plant proteins, casein and whey protein is not fully understood. Certain authors have reported that the firmness or hardness of different fermented products increased with weak supplements of plant ingredients: up to 3% lentil flour in yoghurt (Zare et al., 2011), up to 8% sesame protein isolate in soft cheese (Lu, Schmitt, & Chen, 2010), up to 3% soy protein in rennet curd formation “Mozzarella” (Hsieh, Yun, & Rao, 1993). On the contrary, greater pulse supplementation leads to a more fragile coagulum and so to a lesser degree of firmness or “hardness”: 20% soy protein in rennet curd formation (Lee & Marshall, 1979), 12% sesame protein isolate in soft cheese (Lu et al., 2010). The last authors reported that sesame proteins in low concentration aggre-
gated as clusters of small poly-particles covering the surface of cheese fractures, but when sesame concentration increased, the sesame protein aggregated as a different protein phase in the casein gel matrix.

3.2. Syneresis

Syneresis is considered as a defect that may be reduced by increasing the level of milk solids, especially protein (Tamime & Deeth, 1980) or by using starter cultures producing exopoly-
saccharides that help decrease the level of liquid separation (Hassan, Frank, Schmidt, & Shalabi, 1996). The amounts of liquid separation resulting from the different mixtures and starter cul-
tures after one, seven and 14 days of storage at 4 °C are presented in

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>pH.12 h</th>
<th>Dornic degree</th>
<th>The sample</th>
<th>pH.12 h</th>
<th>Dornic degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>A00</td>
<td>7.5 ± 0.48</td>
<td>7.1 ± 0.06</td>
<td>4.4 ± 0.02</td>
<td>93.4 ± 2.52</td>
<td>C00</td>
</tr>
<tr>
<td>A10</td>
<td>7.6 ± 0.40</td>
<td>7.0 ± 0.06</td>
<td>4.3 ± 0.01</td>
<td>93.8 ± 3.27</td>
<td>C10</td>
</tr>
<tr>
<td>A20</td>
<td>7.8 ± 0.61</td>
<td>6.6 ± 0.04</td>
<td>4.1 ± 0.01</td>
<td>102.1 ± 4.01</td>
<td>C20</td>
</tr>
<tr>
<td>A30</td>
<td>7.1 ± 0.34</td>
<td>8.0 ± 0.07</td>
<td>4.4 ± 0.02</td>
<td>95.2 ± 1.80</td>
<td>C30</td>
</tr>
<tr>
<td>A40</td>
<td>7.5 ± 0.31</td>
<td>9.0 ± 0.09</td>
<td>4.4 ± 0.01</td>
<td>101.7 ± 3.48</td>
<td>C40</td>
</tr>
<tr>
<td>B00</td>
<td>4.7 ± 0.43</td>
<td>16.5 ± 0.05</td>
<td>5.0 ± 0.01</td>
<td>90.7 ± 1.88</td>
<td>D00</td>
</tr>
<tr>
<td>B10</td>
<td>5.6 ± 0.32</td>
<td>11.1 ± 0.07</td>
<td>4.4 ± 0.02</td>
<td>97.2 ± 3.20</td>
<td>D10</td>
</tr>
<tr>
<td>B20</td>
<td>8.5 ± 0.23</td>
<td>10.4 ± 0.06</td>
<td>3.9 ± 0.01</td>
<td>105.3 ± 3.16</td>
<td>D20</td>
</tr>
<tr>
<td>B30</td>
<td>7.3 ± 0.34</td>
<td>10.7 ± 0.07</td>
<td>4.1 ± 0.01</td>
<td>100.6 ± 4.55</td>
<td>D30</td>
</tr>
<tr>
<td>B40</td>
<td>6.4 ± 0.29</td>
<td>10.2 ± 0.04</td>
<td>4.0 ± 0.02</td>
<td>106.0 ± 1.17</td>
<td>D40</td>
</tr>
</tbody>
</table>

The products were submitted to a penetration test after three diff-
ter storage times at 4 °C. As expected, firmness was correlated with
viscosity/consistency index (R² = 0.935) and anti-correlated with the viscosity/consistency index (R² = 0.794). Factorial ANOVA showed that the firmness of products after 14 days of storage was signifi-
cantly higher than that after one and seven days of storage

(R < 0.05). Additionally, ANOVA showed that starter cultures, pea concentration and the interaction between them had significant effects on rheological parameters (P < 0.05). For purposes of clarity, only results concerning firmness after 14 days of storage at 4 °C are presented in Fig. 3. For all starter cultures, the presence of pea milk induced a decrease in firmness. The highest decrease in firmness was observed with the H starter culture in yoghurts without pea milk and in those with 40 g pea protein/100 g total protein at 14 days of storage. Fig. 4 shows the values of product firmness in the two extreme conditions: 0 and 40 g pea protein/100 g total protein, product firmness increased with storage time. The gain in firmness during storage from 1 to 14 days was important in starter cultures H, I, J, A and B. In the presence of 40 g pea protein/100 g total protein, product firmness was dramatically reduced. However, the gain in firmness during storage still occurred.

This increase in firmness can be explained by the post acidification residual activity of lactic bacteria in the products. The lactic acid production and the ability of strains to produce exopolysaccharides leads to the stabilization of casein micelles and a reinforcement of the strength of the protein network (Gazel-Seydim, Seydim, & Seydim, 2005; Saint-Eve, Levy, Le Moigne, Ducruet, & Souchon, 2008). The presence of pea protein did not favor the firmness of the products. Pea proteins seemed to hinder the implementation of the casein network, given the assumption that the milk protein network (casein and whey) may be formed first. Thus, the coagulum of pea protein may settle into the free spaces in the casein network and weaken it. Indeed, the possible molecular interactions between pea globulins and casein are not clearly established in the literature. Especially in dairy products, the structure of the gel composed of plant proteins, casein and whey protein is not fully understood. Certain authors have reported that the firmness or hardness of different fermented products increased with weak supplements of plant ingredients: up to 3% lentil flour in yoghurt (Zare et al., 2011), up to 8% sesame protein isolate in soft cheese (Lu, Schmitt, & Chen, 2010), up to 3% soy protein in rennet curd formation “Mozzarella” (Hsieh, Yun, & Rao, 1993). On the contrary, greater pulse supplementation leads to a more fragile coagulum and so to a lesser degree of firmness or “hardness”: 20% soy protein in rennet curd formation (Lee & Marshall, 1979), 12% sesame protein isolate in soft cheese (Lu et al., 2010). The last authors reported that sesame proteins in low concentration aggregated as clusters of small poly-particles covering the surface of cheese fractures, but when sesame concentration increased, the sesame protein aggregated as a different protein phase in the casein gel matrix.
3.4. Sensory profile

The sensory profiles of the 49 formulated products were compared with the profile of cow milk fermented with a commercial lactic bacteria starter (Alsa). The lexicon included three odor (vinegar, earth, vegetal), three aroma (smoked, dairy, pea), three taste (in mouth: bitter, acid, and sweet), and two mouthfeel (creamy, astringency) attributes. Vinegar, earth, vegetal, astringency, bitter, acid, smoked and pea were regarded as negative descriptors for the overall smell and taste in yoghurt, whereas creamy, sweet and dairy were regarded as positive descriptors. A three-way repeated ANOVA measurement with panelists as a random factor and pea concentrations and starters as fixed factors showed a significant effect of bacteria starters for all descriptors except smoked (Table 3). Globally, bacteria starters A, G, D and J tended to have higher intensities for positive descriptors such as creamy, dairy and sweet, and lower intensities for negative descriptors such as vegetal, earth and vinegar. On the other hand, bacteria starters E, I and C were associated with higher intensities for negative descriptors.
The effect of starter culture, pea concentration and the interaction between starter culture and pea concentration on sensory properties leading to descriptors such as creamy. A significant effect of pea concentration was observed for most starter cultures. In addition to these main effects, significant interactions between starter culture and pea concentration were found for all descriptors except dairy and vegetal. An effect of pea concentration was observed for five negative descriptors (earth, smoked, pea, acid and fluid) as well as for one positive descriptor (creamy) for most starter cultures. As for the other descriptors (vinegar, bitter, sweet and astringent), we observed a pea concentration effect in only a small number of starter cultures.

3.5. PCA and HCA for all measurements

Fig. 5a, b, c and d represent the first three PCA dimensions (70.27% of total variance). The first dimension (37.48% of variance) opposes the negative aroma attributes pea, earth and smoked as well as the negative texture attributes fluid, viscosity and cohesiveness to the positive aroma attribute dairy and positive texture properties firmness and consistency. It represents a gradient in pea concentration ranging from 0 g to 40 g pea protein/100 g total protein. Negative attributes are mostly associated with the highest pea concentration products and positive attributes to the products without pea protein. The second dimension (18.99% of variance) opposes the sweetness attribute to the negative attributes astringent, acid and bitter. It opposes starter cultures A and D yielding positive attributes to starter cultures E yielding negative attributes, independently of pea concentration. The third dimension (13.80% of variance) opposes the kinetic parameters of acidification: V.max, T.end and pH.12. It opposes starter cultures A and D yielding good acidification profiles to starter cultures F and G yielding negative profiles, independently of pea concentration.

The HCA performed on the first three PCA dimensions showed that the 50 products (49 + control) could be divided into five classes (Table 4 and Fig. 5). The first class includes five products, four of them without pea protein. These products are characterized by good texture and were described with positive attributes similar to the attributes of traditional yoghurts usually consumed by the panel (Tu et al., 2010). Moreover, the fifth product in this group, fermented by traditional bacteria starter A, has the same texture as traditional yoghurt and is neither bitter nor astringent although it is composed of 10 g pea protein/100 g total protein. The second class includes 11 products, six of them without pea protein and five with only 10 g pea protein/100 g total protein. This group was described as having dairy and creamy characteristics as well as good firmness.

Although this class contains 8 from 11 products with 30% or 40% pea and without products 0% pea protein, the average notes (10-point scale from low to high) of acid, astringent and bitter attributes in this class were 2.8, 3.3 and 2.4 instead of 4, 4 and 3 in overall average.

4. Conclusion

The partial substitution of milk protein with pea protein did not enhance the physico-chemical characteristics of the dairy gels studied. In order to improve the firmness of these fermented products, a study on the procedure of preparation that may favor the interactions between pea and milk proteins must be performed.
Moreover, future investigations are needed to understand the architecture of the pea/milk protein network. From the sensory point of view, the substitution of animal protein with pea protein dramatically reduced the quality of products regarding their texture and flavor profiles. Whatever the strain, the intensity of five negative descriptors increased with the pea protein ratio. In these

Fig. 5. First three dimensions of the principal component analysis performed on the attributes by product matrix a) correlation circle for axes 1 and 2, b) projections of the products, c) correlation circle for axes 1 and 3, d) projections of the products. The two variables are pea concentration (▵) and starter culture (□), where the members of the first group are represented by (×), the second by (●), the third by (♀), the fourth by (●) and the fifth by (+).

Table 4
The characteristics of the five classes of hierarchical cluster analysis performed on the first three dimensions of the principal component analysis.

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
<th>Class 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A00–A10–B00–D00–G00</td>
<td>B10–C00–C10–E00–F00</td>
<td>E10–E20–E30–I20–I30</td>
<td>A20–A30–A40–B20–B30–C20</td>
<td>B40–F20–F30–F40–H20–H30–H40–I40</td>
</tr>
<tr>
<td>Over-represented variable</td>
<td>Under-represented variable</td>
<td>Over-represented variable</td>
<td>Under-represented variable</td>
<td>Over-represented variable</td>
</tr>
<tr>
<td>Dairy</td>
<td>Firmness</td>
<td>Consistency</td>
<td>Creamy</td>
<td>Dairy</td>
</tr>
<tr>
<td>Earthy</td>
<td>V.max</td>
<td>pH.12 h</td>
<td>Vegetable</td>
<td>V.max</td>
</tr>
<tr>
<td>Sweet</td>
<td>Sweet</td>
<td>Sweet</td>
<td>Sweet</td>
<td>Sweet</td>
</tr>
<tr>
<td>Over-represented variable</td>
<td>Under-represented variable</td>
<td>Over-represented variable</td>
<td>Under-represented variable</td>
<td>Over-represented variable</td>
</tr>
<tr>
<td>Pea</td>
<td>Smoked</td>
<td>Acid</td>
<td>Astringent</td>
<td>Smoked</td>
</tr>
</tbody>
</table>
conditions, the products composed of more than 20 g pea protein/100 g total protein were far removed from the sensory profile of conventional yoghurts. Considering both the sensory characteristics and fermentation parameters, four starter cultures (A, B, F and H) seem promising for the production of yoghurts with pea proteins. It should be noted that these four starters all contain S. thermophilus.

Acknowledgments

The authors gratefully acknowledge A. Fusaro, C. Lucet, E. Tournemine, F. Gora and J. Huard, who helped to realize the sensory profile. The authors also thank M. Bouley for revising the English version of the manuscript. M. Youseef thankfully acknowledges the Syrian Ministry of Higher Education for a Ph.D. fellowship that this work is a part of.

References

