R. 1. Jordan, S. D. Konner, A. C. Bruning, and J. C. , Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis, Cellular and Molecular Life Sciences, vol.293, issue.13, pp.3255-3273, 2010.
DOI : 10.1172/JCI20514

S. Sisley and D. Sandoval, Hypothalamic control of energy and glucose metabolism. Reviews in endocrine & metabolic disorders 12, pp.219-233, 2011.

C. Blouet and G. J. Schwartz, Hypothalamic nutrient sensing in the control of energy homeostasis, Behavioural Brain Research, vol.209, issue.1, pp.1-12, 2010.
DOI : 10.1016/j.bbr.2009.12.024

S. J. Guyenet and M. W. Schwartz, Regulation of Food Intake, Energy Balance, and Body Fat Mass: Implications for the Pathogenesis and Treatment of Obesity, The Journal of Clinical Endocrinology & Metabolism, vol.97, issue.3, pp.745-755, 2012.
DOI : 10.1210/jc.2011-2525

L. Pellerin, Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line, Glia, vol.21, issue.1, pp.74-83, 1997.
DOI : 10.1002/(SICI)1098-1136(199709)21:1<74::AID-GLIA8>3.0.CO;2-1

W. Ganong, Circumventricular Organs: Definition And Role In The Regulation Of Endocrine And Autonomic Function, Clinical and Experimental Pharmacology and Physiology, vol.45, issue.5-6, pp.422-427, 2000.
DOI : 10.1016/0196-9781(96)00025-3

E. Norsted, B. Gomuc, and B. Meister, Protein components of the blood???brain barrier (BBB) in the mediobasal hypothalamus, Journal of Chemical Neuroanatomy, vol.36, issue.2, pp.107-121002, 2008.
DOI : 10.1016/j.jchemneu.2008.06.002

P. Ciofi, Brain-Endocrine Interactions: A Microvascular Route in the Mediobasal Hypothalamus, Endocrinology, vol.150, issue.12, pp.5509-5519, 2009.
DOI : 10.1210/en.2009-0584

F. Langlet, Tanycytic VEGF-A Boosts Blood-Hypothalamus Barrier Plasticity and Access of Metabolic Signals to the Arcuate Nucleus in Response to Fasting, Cell Metabolism, vol.17, issue.4, pp.607-617, 2013.
DOI : 10.1016/j.cmet.2013.03.004

V. Prevot, F. Langlet, and B. Dehouck, Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain, Aging, vol.5, issue.5, pp.332-334, 2013.
DOI : 10.18632/aging.100557

L. Pellerin, Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity, Diabetes & Metabolism, vol.36, issue.10, pp.59-63, 2010.
DOI : 10.1016/S1262-3636(10)70469-9

V. H. Routh, L. Hao, A. M. Santiago, Z. Sheng, and C. Zhou, Hypothalamic glucose sensing: making ends meet. Frontiers in systems neuroscience 8, p.236, 2014.
DOI : 10.3389/fnsys.2014.00236

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261699

R. A. Hawkins, A. M. Mans, and D. W. Davis, Regional ketone body utilization by rat brain in starvation and diabetes, The American journal of physiology, vol.250, pp.169-178, 1986.
DOI : 10.1042/bj1220013

URL : http://www.biochemj.org/content/ppbiochemj/122/1/13.full.pdf

D. Ebert, R. G. Haller, and M. E. Walton, Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.23, pp.5928-5935, 2003.

K. Pierre, Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice, The Journal of Physiology, vol.83, issue.2, pp.469-486138594, 2007.
DOI : 10.1016/j.physbeh.2004.07.026

F. Escriva, A. M. Pascual-leone, A. Galan, and J. P. Encinas, Circulating glucose, insulin and ketone bodies and enzymes of ketone body utilization in brain mitochondria from suckling rats treated with high L-thyroxine doses, Revista espanola de fisiologia, vol.39, pp.363-371, 1983.

Y. Y. Yeh and P. M. Sheehan, Preferential utilization of ketone bodies in the brain and lung of newborn rats, Federation proceedings, vol.44, pp.2352-2358, 1985.

O. Lukivskaya and V. Buko, Utilization of ketone bodies by the rat liver, brain and heart in chronic alcohol intoxication, Alcohol and alcoholism, vol.28, pp.431-436, 1993.

R. L. Leino, D. Z. Gerhart, R. Duelli, B. E. Enerson, and L. R. Drewes, Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain, Neurochemistry International, vol.38, issue.6, pp.519-527, 2001.
DOI : 10.1016/S0197-0186(00)00102-9

R. L. Veech, The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.70, issue.3, pp.309-319, 2004.
DOI : 10.1016/j.plefa.2003.09.007

A. Paoli, L. Cenci, and K. A. Grimaldi, Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees, Nutrition Journal, vol.24, issue.Suppl 2, pp.10-1186, 2011.
DOI : 10.1016/j.clnu.2005.08.004

R. A. Hawkins and J. Biebuyck, Ketone bodies are selectively used by individual brain regions, Science, vol.205, issue.4403, pp.325-327, 1979.
DOI : 10.1126/science.451608

C. S. Johnston, Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. The American journal of clinical nutrition 83, pp.1055-1061, 2006.

H. M. Dashti, Beneficial effects of ketogenic diet in obese diabetic subjects, Molecular and Cellular Biochemistry, vol.85, issue.1, pp.249-256, 2007.
DOI : 10.1080/07315724.2000.10718935

L. C. Ribeiro, Ketogenic diet-fed rats have increased fat mass and phosphoenolpyruvate carboxykinase activity. Molecular nutrition & food research 52, pp.1365-1371, 2008.
DOI : 10.1002/mnfr.200700415

E. C. Westman, W. S. Yancy, . Jr, J. C. Mavropoulos, M. Marquart et al., The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus, Nutrition & Metabolism, vol.5, issue.1, pp.10-1186, 2008.
DOI : 10.1186/1743-7075-5-36

K. Iwata, Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. The journal of physiological sciences: JPS 61, pp.103-113, 2011.

S. Park, S. Kim-da, and J. W. Daily, Central infusion of ketone bodies modulates body weight and hepatic insulin sensitivity by modifying hypothalamic leptin and insulin signaling pathways in type 2 diabetic rats, Brain Research, vol.1401, pp.95-103, 2011.
DOI : 10.1016/j.brainres.2011.05.040

L. Carneiro, Evidence for hypothalamic ketone bodies sensing: impact on food intake and peripheral metabolic responses in mice, American Journal of Physiology - Endocrinology And Metabolism, 2015.
DOI : 10.1152/ajpendo.00282.2015

URL : https://hal.archives-ouvertes.fr/hal-01276723

A. Paoli, G. Bosco, E. M. Camporesi, and D. Mangar, Ketosis, ketogenic diet and food intake control: a complex relationship, Frontiers in Psychology, vol.9, issue.27, p.27, 2015.
DOI : 10.1016/j.cmet.2009.03.012

URL : http://doi.org/10.3389/fpsyg.2015.00027

S. M. Nickols-richardson, M. D. Coleman, J. J. Volpe, and K. W. Hosig, Perceived Hunger Is Lower and Weight Loss Is Greater in Overweight Premenopausal Women Consuming a Low-Carbohydrate/High-Protein vs High-Carbohydrate/Low-Fat Diet, Journal of the American Dietetic Association, vol.105, issue.9, pp.1433-1437025, 2005.
DOI : 10.1016/j.jada.2005.06.025

A. M. Johnstone, G. W. Horgan, S. D. Murison, D. M. Bremner, and G. Lobley, Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum, The American journal of clinical nutrition, vol.87, pp.44-55, 2008.

A. Paoli, A. Bianco, K. A. Grimaldi, A. Lodi, and G. Bosco, Long Term Successful Weight Loss with a Combination Biphasic Ketogenic Mediterranean Diet and Mediterranean Diet Maintenance Protocol, Nutrients, vol.6, issue.12, pp.5205-5217, 2013.
DOI : 10.1002/oby.20239

URL : http://www.mdpi.com/2072-6643/5/12/5205/pdf

P. Sumithran, Ketosis and appetite-mediating nutrients and hormones after weight loss, European Journal of Clinical Nutrition, vol.281, issue.7, pp.759-76490, 2013.
DOI : 10.2337/db11-1511

P. Sumithran and J. Proietto, The defence of body weight: a physiological basis for weight regain after weight loss, Clinical Science, vol.111, issue.4, pp.231-241, 2013.
DOI : 10.1210/jc.2009-1350

L. Foll, C. Dunn-meynell, A. A. Miziorko, H. M. Levin, and B. , Regulation of Hypothalamic Neuronal Sensing and Food Intake by Ketone Bodies and Fatty Acids, Diabetes, vol.63, issue.4, pp.1259-1269, 2014.
DOI : 10.2337/db13-1090

L. Foll, C. Dunn-meynell, A. A. Miziorko, H. M. Levin, and B. , Role of VMH ketone bodies in adjusting caloric intake to increased dietary fat content in DIO and DR rats, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.308, issue.10, pp.34909-34919, 2015.
DOI : 10.1152/ajpregu.00015.2015

J. Triscari, M. R. Greenwood, and A. C. Sullivan, Oxidation and ketogenesis in hepatocytes of lean and obese Zucker rats, Metabolism, vol.31, issue.3, pp.223-228, 1982.
DOI : 10.1016/0026-0495(82)90057-9

L. Foll, C. Dunn-meynell, A. Musatov, S. Magnan, C. Levin et al., FAT/CD36: A Major Regulator of Neuronal Fatty Acid Sensing and Energy Homeostasis in Rats and Mice, Diabetes, vol.62, issue.8, pp.2709-2716, 2013.
DOI : 10.2337/db12-1689

L. Carneiro and L. Pellerin, Monocarboxylate transporters: new players in body weight regulation, Obesity Reviews, vol.183, issue.Pt 2, pp.55-66, 2015.
DOI : 10.1083/jcb.200807052

S. Lengacher, Resistance to Diet-Induced Obesity and Associated Metabolic Perturbations in Haploinsufficient Monocarboxylate Transporter 1 Mice, PLoS ONE, vol.276, issue.12, p.82505, 2013.
DOI : 10.1371/journal.pone.0082505.s004

T. Yamada, S. J. Zhang, H. Westerblad, and . Katz, ??-Hydroxybutyrate inhibits insulin-mediated glucose transport in mouse oxidative muscle, AJP: Endocrinology and Metabolism, vol.299, issue.3, pp.364-373, 2010.
DOI : 10.1152/ajpendo.00142.2010

T. Laeger, R. Pohland, C. C. Metges, and B. Kuhla, The ketone body ??-hydroxybutyric acid influences agouti-related peptide expression via AMP-activated protein kinase in hypothalamic GT1-7 cells, Journal of Endocrinology, vol.213, issue.2, pp.193-203, 2012.
DOI : 10.1530/JOE-11-0457

L. Foll, C. Dunn-meynell, A. A. Levin, and B. , Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.308, issue.3, pp.188-198, 2015.
DOI : 10.1152/ajpregu.00367.2014

J. S. Fisler, M. Egawa, and G. A. Bray, Peripheral 3-hydroxybutyrate and food intake in a model of dietary-fat induced obesity: Effect of vagotomy, Physiology & Behavior, vol.58, issue.1, pp.1-7, 1995.
DOI : 10.1016/0031-9384(94)00376-G

G. F. Cahill, . Jr, and R. L. Veech, Ketoacids? Good medicine? Transactions of the, American Clinical and Climatological Association, vol.114, pp.149-161, 2003.

E. N. Dedkova and L. A. Blatter, Role of beta-hydroxybutyrate, its polymer poly-beta-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease, Frontiers in physiology, vol.5, issue.260, p.260, 2014.

K. Pierre and L. Pellerin, Monocarboxylate transporters in the central nervous system: distribution, regulation and function, Journal of Neurochemistry, vol.50, issue.2, pp.1-14, 2005.
DOI : 10.1006/bbrc.1997.6588

E. K. Ainscow, S. Mirshamsi, T. Tang, M. L. Ashford, and G. A. Rutter, channels, The Journal of Physiology, vol.50, issue.suppl. 2, pp.429-445, 2002.
DOI : 10.2337/diabetes.50.2.361

F. P. Schiavon, V. A. Gazola, M. M. Furlan, H. C. Barrena, and R. B. Bazotte, Paradoxical increase in liver ketogenesis during long-term insulin-induced hypoglycemia in diabetic rats, Experimental Biology and Medicine, vol.42, issue.2, pp.227-232, 2011.
DOI : 10.1016/0026-0495(93)90153-F

M. Beylot, Regulation of in vivo ketogenesis: role of free fatty acids and control by epinephrine, thyroid hormones, insulin and glucagon, Diabetes & metabolism, vol.22, pp.299-304, 1996.

S. Crespo, C. , P. Cachero, A. , P. Jimenez et al., Peptides and food intake. Frontiers in endocrinology 5, p.58, 2014.

T. Jaillard, Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase-Dependent Mechanism, Diabetes, vol.58, issue.7, pp.1544-1549, 2009.
DOI : 10.2337/db08-1039

URL : https://hal.archives-ouvertes.fr/hal-00461354

N. Ivarsson, S. J. Zhang, and A. Katz, AICAR reverses ketone body mediated insulin resistance in isolated oxidative muscle, Biochemical and Biophysical Research Communications, vol.414, issue.4, pp.670-674, 2011.
DOI : 10.1016/j.bbrc.2011.09.122

M. C. Laury, Insulin Secretion in Rats, Endocrinology, vol.128, issue.5, pp.2526-2533, 1991.
DOI : 10.1210/endo-128-5-2526

N. 'guyen and J. M. , Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats., Journal of Clinical Investigation, vol.94, issue.4, pp.1456-1462, 1994.
DOI : 10.1172/JCI117483

K. Pierre, L. Pellerin, R. Debernardi, B. M. Riederer, and P. J. Magistretti, Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy, Neuroscience, vol.100, issue.3, pp.617-627, 2000.
DOI : 10.1016/S0306-4522(00)00294-3

S. Lengacher, P. J. Magistretti, and L. Pellerin, Quantitative RT-PCR Analysis of Uncoupling Protein Isoforms in Mouse Brain Cortex: Methodological Optimization and Comparison of Expression with Brown Adipose Tissue and Skeletal Muscle, Journal of Cerebral Blood Flow & Metabolism, vol.14, issue.2, pp.780-78852, 2004.
DOI : 10.1096/fj.14.11.1611