N. Cheung, P. Mitchell, and T. Y. Wong, Diabetic retinopathy, The Lancet, vol.376, issue.9735, pp.124-160, 2010.
DOI : 10.1016/S0140-6736(09)62124-3

D. S. Fong, L. P. Aiello, F. L. Ferris, and P. Klein, Diabetic Retinopathy, Diabetes Care, vol.27, issue.10, pp.2540-53, 2004.
DOI : 10.2337/diacare.27.10.2540

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, vol.27, issue.5, pp.1047-1053, 2004.
DOI : 10.2337/diacare.27.5.1047

P. J. Saine, What is a fundus camera, 2006.

C. K. Leung, C. Y. Cheung, R. N. Weinreb, G. Lee, D. Lin et al., Comparison of Macular Thickness Measurements between Time Domain and Spectral Domain Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.49, issue.11
DOI : 10.1167/iovs.07-1326

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park et al., Spectral Domain Optical Coherence Tomography, Archives of Ophthalmology, vol.123, issue.12, pp.1715-1720, 2005.
DOI : 10.1001/archopht.123.12.1715

M. D. Abramoff, M. K. Garvin, and M. Sonka, Retinal Imaging and Image Analysis, IEEE Reviews in Biomedical Engineering, vol.3, pp.169-208, 2010.
DOI : 10.1109/RBME.2010.2084567

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131209

E. Trucco, A. Ruggeri, T. Karnowski, L. Giancardo, E. Chaum et al., Validating Retinal Fundus Image Analysis Algorithms: Issues and a Proposal, Investigative Opthalmology & Visual Science, vol.54, issue.5, pp.3546-3569, 2013.
DOI : 10.1167/iovs.12-10347

URL : https://hal.archives-ouvertes.fr/hal-00824593

R. A. Costa, M. Skaf, L. A. Melo-jr, D. Calucci, J. A. Cardillo et al., Retinal assessment using optical coherence tomography, Progress in Retinal and Eye Research, vol.25, issue.3, pp.325-353, 2006.
DOI : 10.1016/j.preteyeres.2006.03.001

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abramoff et al., Three-Dimensional Analysis of Retinal Layer Texture: Identification of Fluid-Filled Regions in SD-OCT of the Macula, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1321-1330, 2010.
DOI : 10.1109/TMI.2010.2047023

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff et al., 3D segmentation of fluid-associated abnormalities in retinal OCT: Probability constrained graph-search-graph cut, IEEE Trans. on Medical Imaging, issue.8, pp.31-1521, 2012.

I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, Automated segmentation of macular layers in OCT images and quantitative evaluation of performances, Pattern Recognition, vol.44, issue.8, pp.1590-1603, 2011.
DOI : 10.1016/j.patcog.2011.01.012

URL : https://hal.archives-ouvertes.fr/hal-00682823

R. Kafieh, H. Rabbani, and S. Kermani, A review of algorithms for segmentation of optical coherence tomography from retina, Journal of Medicals Signals and Sensors, vol.3, issue.1, pp.45-60, 2013.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth et al., Fully Automatic Software for Retinal Thickness in Eyes With Diabetic Macular Edema From Images Acquired by Cirrus and Spectralis Systems, Investigative Opthalmology & Visual Science, vol.54, issue.12, pp.7595-7602, 2013.
DOI : 10.1167/iovs.13-11762

Y. Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman et al., Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding, Medical Image Analysis, vol.15, issue.5, pp.748-759, 2011.
DOI : 10.1016/j.media.2011.06.005

P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer et al., Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images, Biomedical Optics Express, vol.5, issue.10, pp.3568-3577, 2014.
DOI : 10.1364/BOE.5.003568

N. Anantrasirichai, A. Achim, J. E. Morgan, I. Erchova, and L. Nicholson, SVM-based texture classification in Optical Coherence Tomography, 2013 IEEE 10th International Symposium on Biomedical Imaging, pp.1332-1335, 2013.
DOI : 10.1109/ISBI.2013.6556778

A. Albarrak, F. Coenen, and Y. Zheng, Age-related macular degeneration identification in volumetric optical coherence tomography using decomposition and local feature extraction, 17th Annual Conference in Medical Image Understanding and Analysis, pp.59-64, 2013.

F. G. Venhuizen, B. Van-ginneken, B. Bloemen, M. J. Van-grisven, R. Philipsen et al., Automated agerelated macular degeneration classification in oct using unsupervised feature learning, In: SPIE Medical Imaging, vol.9414, p.94141, 2015.

G. Lema??trelema??tre, M. Rastgoo, J. Massich, S. Sankar, F. Mériaudeau et al., Classification of SD-OCT volumes with LBP: application to DME detection, Ophthamic Medical Image Analysis Workshop (MICCAI), 2015.

J. M. Schmitt, S. Xiang, and K. M. Yung, Speckle in Optical Coherence Tomography, Journal of Biomedical Optics, vol.4, issue.1, pp.95-105, 1999.
DOI : 10.1117/1.429925

A. Buades, B. Coll, and J. M. Morel, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

K. P. Murphy, Machine learning: a probabilistic perspective, 2012.

C. Bishop, Pattern recognition and machine learning, 2006.