Twenty Parameters Families of Solutions to the NLS Equation and the Eleventh Peregrine Breather

Abstract : The Peregrine breather of order eleven (P-11 breather) solution to the focusing one-dimensional nonlinear Schrodinger equation (NLS) is explicitly constructed here. Deformations of the Peregrine breather of order 11 with 20 real parameters solutions to the NLS equation are also given: when all parameters are equal to 0 we recover the famous P-11 breather. We obtain new families of quasi-rational solutions to the NLS equation in terms of explicit quotients of polynomials of degree 132 in x and t by a product of an exponential depending on t. We study these solutions by giving patterns of their modulus in the (x; t) plane, in function of the different parameters.
Type de document :
Article dans une revue
Communications in Theoretical Physics, Chinese Physical Society, 2016, 65 (2), pp.136 - 144. <http://iopscience.iop.org/article/10.1088/0253-6102/65/2/136/meta>. <10.1088/0253-6102/65/2/136>
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01405314
Contributeur : Ub_drive Université de Bourgogne <>
Soumis le : mardi 29 novembre 2016 - 17:09:37
Dernière modification le : lundi 29 mai 2017 - 14:29:57

Identifiants

Collections

Citation

Pierre Gaillard, Mickaël Gastineau. Twenty Parameters Families of Solutions to the NLS Equation and the Eleventh Peregrine Breather. Communications in Theoretical Physics, Chinese Physical Society, 2016, 65 (2), pp.136 - 144. <http://iopscience.iop.org/article/10.1088/0253-6102/65/2/136/meta>. <10.1088/0253-6102/65/2/136>. <hal-01405314>

Partager

Métriques

Consultations de la notice

62