Robust criterion for the existence of nonhyperbolic ergodic measures

Abstract : We give explicit $C^1$-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly. The conditions of the criterion are met on a $C^1$-dense and open subset of the set of diffeomorphisms having a robust cycle. As a corollary, there exists a $C^1$-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy. The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.
Type de document :
Article dans une revue
Communications in Mathematical Physics, Springer Verlag, 2016, 344 (3), pp. 751-795 〈10.1007/s00220-016-2644-5 〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01407967
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 2 décembre 2016 - 18:17:23
Dernière modification le : mardi 27 mars 2018 - 01:03:45

Lien texte intégral

Identifiants

Collections

Citation

Jairo Bochi, Christian Bonatti, Lorenzo J. Díaz. Robust criterion for the existence of nonhyperbolic ergodic measures. Communications in Mathematical Physics, Springer Verlag, 2016, 344 (3), pp. 751-795 〈10.1007/s00220-016-2644-5 〉. 〈hal-01407967〉

Partager

Métriques

Consultations de la notice

99