Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics

Abstract : We show that a partially hyperbolic $C^1$-diffeomorphism $f : M \to M$ with a uniformly compact $f$-invariant center foliation $F^c$ is dynamically coherent. Further, the induced homeomorphism $F : M/F^c \to M/F^c$ on the quotient space of the center foliation has the shadowing property, i. e. for every $\varepsilon> 0$ there exists $\delta > 0$ such that every $\delta$--pseudo-orbit of center leaves is $\varepsilon$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting properties of the quotient dynamics are also discussed.
Type de document :
Article dans une revue
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (4), pp.1067-1105 〈10.1017/etds.2014.102 〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01410903
Contributeur : Imb - Université de Bourgogne <>
Soumis le : mardi 6 décembre 2016 - 18:18:02
Dernière modification le : mardi 27 mars 2018 - 01:05:57

Lien texte intégral

Identifiants

Collections

Citation

Doris Bohnet, Christian Bonatti. Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (4), pp.1067-1105 〈10.1017/etds.2014.102 〉. 〈hal-01410903〉

Partager

Métriques

Consultations de la notice

76