On critical behaviour in generalized Kadomtsev-Petviashvili equations

Abstract : An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev-Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is, given in terms of a special solution to an ordinary differential equation of the Painleve I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves. (C) 2016 Elsevier B.V. All rights reserved.
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01410977
Contributeur : Imb - Université de Bourgogne <>
Soumis le : mardi 6 décembre 2016 - 19:10:22
Dernière modification le : mercredi 7 décembre 2016 - 09:16:26

Identifiants

Collections

Citation

B Dubrovin,, T. Grava, Christian Klein. On critical behaviour in generalized Kadomtsev-Petviashvili equations. Physica D: Nonlinear Phenomena, Elsevier, 2016, 333, pp.157-170. 〈http://www.sciencedirect.com/science/article/pii/S0167278916000154〉. 〈10.1016/j.physd.2016.01.011 〉. 〈hal-01410977〉

Partager

Métriques

Consultations de la notice

70