Large- x Analysis of an Operator-Valued Riemann–Hilbert Problem

Abstract : The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.
Type de document :
Article dans une revue
International Mathematics Research Notices, Oxford University Press (OUP), 2016, 2016 (6), pp.1776 - 1806. <https://academic.oup.com/imrn/article-abstract/2016/6/1776/2450916/Large-x-Analysis-of-an-Operator-Valued-Riemann?redirectedFrom=fulltext>. <10.1093/imrn/rnv188>
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01412826
Contributeur : Imb - Université de Bourgogne <>
Soumis le : jeudi 8 décembre 2016 - 19:15:06
Dernière modification le : mardi 13 décembre 2016 - 09:31:49

Identifiants

Collections

Citation

A. R. Its, K. K. Kozlowski. Large- x Analysis of an Operator-Valued Riemann–Hilbert Problem. International Mathematics Research Notices, Oxford University Press (OUP), 2016, 2016 (6), pp.1776 - 1806. <https://academic.oup.com/imrn/article-abstract/2016/6/1776/2450916/Large-x-Analysis-of-an-Operator-Valued-Riemann?redirectedFrom=fulltext>. <10.1093/imrn/rnv188>. <hal-01412826>

Partager

Métriques

Consultations de la notice

22