Homological projective duality for determinantal varieties

Abstract : In this paper we prove Homological Projective Duality for categorical resolutions of several classes of linear determinantal varieties. By this we mean varieties that are cut out by the minors of a given rank of a m x n matrix of linear forms on a given projective space. As applications, we obtain pairs of derived-equivalent Calabi-Yau manifolds, and address a question by A. Bondal asking whether the derived category of any smooth projective variety can be fully faithfully embedded in the derived category of a smooth Fano variety. Moreover we, discuss the relation between rationality and categorical representability in codimension two for determinantal varieties. (C) 2016 Elsevier Inc. All rights reserved.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01414661
Contributeur : Imb - Université de Bourgogne <>
Soumis le : lundi 12 décembre 2016 - 14:46:29
Dernière modification le : mardi 10 octobre 2017 - 11:03:13

Identifiants

Citation

Marcello Bernardara, Michele Bolognesi, Daniele Faenzi. Homological projective duality for determinantal varieties. Advances in Mathematics, Elsevier, 2016, 296, pp.181 - 209. 〈http://www.sciencedirect.com/science/article/pii/S0001870816303991〉. 〈10.1016/j.aim.2016.04.003〉. 〈hal-01414661〉

Partager

Métriques

Consultations de la notice

98