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Abstract—Thanks to their effectiveness, Active contour models 

(ACMs) are of great interest for computer vision scientists. The 

level set methods (LSMs) refer to the class of geometric active 

contours. Comparing with the other ACMs, in addition to 

sub-pixel accuracy, it has the intrinsic ability to automatically 

handle topological changes. Nevertheless, the LSMs are 

computationally expensive. A solution for their time consumption 

problem can be hardware acceleration using some massively 

parallel devices such as graphics processing units (GPUs). But the 

question is: which accuracy can we reach while still maintaining 

an adequate algorithm to massively parallel architecture? In this 

work, we attempt to push back the compromise between, speed 

and accuracy, efficiency and effectiveness, to a higher level, 

comparing with state-of-the-art methods. To this end, we designed 

a novel architecture-aware hybrid CPU-GPU LSM for image 

segmentation. The initialization step, using the well-known 

k-means algorithm, is fast although executed on a CPU, while the 

evolution equation of the active contour is inherently local and 

therefore suitable for GPU-based acceleration. The incorporation 

of local statistics in the level set evolution allowed our model to 

detect new boundaries which are not extracted by the used 

clustering algorithm. Comparing with some cutting-edge LSMs, 

the introduced model is faster, more accurate, less subject to 

giving local minima, and therefore suitable for automatic systems. 

Furthermore, it allows two-phase clustering algorithms to benefit 

from the numerous LSM advantages such as the ability to achieve 

robust and sub-pixel accurate segmentation results with smooth 

and closed contours. Intensive experiments demonstrate, 

objectively and subjectively, the good performance of the 

introduced framework both in terms of speed and accuracy. 

 
Index Terms—Level set method, image segmentation, graphics 

processing units, hybrid CPU-GPU architecture. 

 

I. INTRODUCTION 

N computer vision and pattern recognition, image 

segmentation [1-7] is a major process by which a given 

image is partitioned into a number of meaningful and 

homogeneous regions, such that the union of any two 

neighborhood regions yields a heterogeneous segment. Due to 

the fact that there is no a general framework which is effective 

for all kinds of images, the task is non-trivial and more 

challenging in presence of noise. One should choose the proper 

method according to the characteristics of the image in hand. 

In recent years, optimization methods have attracted much 

attention as powerful and natural image segmentation tools. 

Their basic principle is to achieve segmentation by minimizing  
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a given energy function designed from the image information. 

Optimization methods can be roughly classified into two 

important classes: spatially discrete and spatially continuous 

representations. In spatially discrete approaches, the image 

pixels are usually considered as the nodes of a graph, and the 

aim of segmentation is to find cuts of this graph which have a 

minimal cost [8-9]. 

Active contour models belong to the spatially continuous 

approaches: the segmentation of the image plane is considered 

as a problem of infinite-dimensional optimization. The main 

idea is to evolve a given curve in the direction of negative 

energy gradient by means of an appropriate partial differential 

equation. The level set method (LSM) [10-13] designates the 

class of ACMs which uses the Eulerian framework, i.e., the 

geometric representation of the evolving curve, instead of the 

parametric one, i.e., the Lagrangian framework [14-17]. Fig. 1 

displays the organization of the ACMs. 

Comparing with parametric active contours, the LSM 

presents more advantages, such as the ability to easily handle 

complex shapes, and topological changes. Furthermore, it 

allows a straightforward passage from two-dimensional (2D) to 

3D space. The original idea of the LSM stems from the 

Hamilton Jacobi approach, i.e., a time-dependent equation for a 

moving surface [18-20]. In space, the LSM aims to evolve a 

given curve toward its interior or exterior normal until defining 

the boundary of the object of interest. The curve evolution is 

driven by the level set equation (LSE) which is a nonlinear 

partial differential equation formulated as follow  

 

( ),


  


V k
t


                               (1) 

 

where   is the level set function (LSF), V  the velocity field 

which guides the active curve toward the needed boundaries, 

  and   are user-controlling parameters and k  is a nonlinear 

curvature term expressed as 

 

.


  


k



                                   (2) 

 

Two main approaches are usually used to stop the evolving 

curve on the contours of the desired object. The first uses an 

edge indicator depending on the gradient of the image, as in 

classical snake and active contour models [21-25]. These 

models have a lower computational complexity and are suitable 

to parallel architecture, but they are sensitive to noise and 

initialization. 
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Fig. 1. Organization ACMs 

 

The second uses some regional attributes to stop the evolving 

curve on the real boundary. These models are more robust 

against noise and can detect objects with weak edges. One of 

the most known region-based level set algorithms was 

proposed in [29] where Chan and Vese introduced a level set 

formulation to minimize the Mumford and Shah functional 

[30]. They converted the problem into a mean curvature flow 

problem just like the active contours. In [27], the authors used 

this approach in the field of remote sensing imagery for 

automatic detection of man-made objects (roads, buildings, etc.) 

from aerial and satellite images. In [52], Bazi et al. presented an 

unsupervised change detection method for multispectral images 

by designing a region-based energy functional using the 

difference image. The level set framework was then used to 

minimize the designed functional. 

The region-based level set algorithms give better results than 

those of the classical active contours because the stopping term 

did not depend on the gradient of the image, reducing the 

dependence on strong edges and improving the robustness 

against noise. However, most of the times they cannot deal with 

intensity inhomogeneities, and are definitely not suitable for 

parallel programming, because they are not local. Furthermore, 

in order to solve the LSE, most of these methods suggest the 

use of some computationally expensive finite difference, finite 

element or finite volume approximations and an explicit 

computation of the curvature [31-32]. 

In our previous work [26] and [28], in order to handle the 

problem of computational expense, we used the lattice 

Boltzmann method (LBM) as an alternative approach for 

solving the LSE. Comparing with [29] for example, these 

approaches give better results in terms of efficiency and 

accuracy. The problem of time consumption is better handled 

because the curvature is implicitly computed and the algorithm 

is simple. But these introduced methods have some limits. In 

[26], we used regional attributes of a given pixel to design an 

Unsigned Pressure Force (UPF) which acted as a stop function 

for the active curve. This method is greatly dependent to the 

initialization which limits its use in automatic systems. 

Furthermore, the UPF is not local and therefore not suitable to 

parallel architecture-based acceleration. In [28], we used both 

local and regional statistics to design an energy function which 

had to be minimized using the level set framework, the method 

was more effective and robust against initialization than the one 

introduced in [26]. But as in [28], we still need to compute the 

mean values of pixels intensity inside and outside the active 

curve at each iteration, which increases the communication 

between the processors of any massively parallel device like 

GPU, and therefore slowdown the method.  

In this work, we introduce a novel architecture-driven 

framework which allows obtaining a highly effective and fully 

local level set equation. Therefore, the proposed algorithm is 

adequate to parallel hardware-based acceleration, while 

allowing the achievement of promising segmentation results. In 

addition, the proposed method is a general framework which 

allows to considerably improving the results of most two-phase 

clustering methods such as k-means, the fuzzy c-means and 

their derivatives. By using the two intensity means output of the 

clustering algorithms and some local statistics of the image, we 

design an effective and inherently local energy functional. A 

fully local LSE is then obtained using the gradient descent 

methods. This strategy effectively allows combining, in a 

straightforward manner, the advantages of clustering technics 

and level set methods. On the one hand, the speed and the low 

complexity of some clustering algorithms, such as k-means, 

make the methods faster in comparison to some state of the art 

LSMs; on the other hand, the method has the advantages of the 

LSMs such as the ability to 

1- achieve sub-pixel accuracy [29]; 

2- allow the incorporation of various prior knowledge, for 

example, shape and intensity distribution in order to 

achieve more robust segmentation results [33]; 

3- provide smooth and closed contours which are 

ineluctable for further applications such as shape 

analysis and recognition [34]. 

Although, most of two-phase clustering methods can be 

used, in this paper we use the output of the k-means algorithm, 

which has been initialized using the interior and the exterior 

intensity means of the initial active curve. The k-means 

algorithm, which is intrinsically fast and non-local, is executed 

on the CPU, while the level set evolution is executed on an 

NVIDIA GPU. The major contributions of the present work can 

be summarized as follows: 

1- A novel inherently local and effective level set 

framework which perfectly suited to massively parallel 

architecture. The method can therefore be used in 

real-time computer vision systems; 

2- A novel technic allowing some original clustering 

methods to benefit from the LSM’s numerous 

advantages, and vice versa; 

3- The introduction of local statistics in the level set 

evolution equation allowing the detection of new 

boundaries which are not extracted by the clustering 

algorithm. As a result 

a. the minimization framework is less subject to giving 

local minima; 

b. the framework is therefore less sensitive to 

initialization than the classical LSM and the k-means 

algorithm taken alone; 
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c. the algorithm suits more to automatic systems; 

4- A robust and effective hybrid CPU-GPU framework for 

fast image segmentation. 

Intensive experiments, using the Berkeley segmentation 

dataset BSDS300 [35], demonstrate, subjectively and 

objectively, the effectiveness and efficiency of the proposed 

segmentation framework. 

The remainder of the paper is organized as follows. Section 

2 introduces the LBM. The formulation of the proposed method 

is given in Section 3. Section 4 presents the experimental 

results. The final section is the conclusion. 

II. BACKGROUND 

This section gives a general idea of the lattice Boltzmann 

model. The LBM was first designed to simulate Navier-Stokes 

equations for an incompressible fluid [37-39]. Its evolution 

equation is 

 

( , 1) ( , ) ,
 

     
 

  
i i i

coll

f
f r e t f r t

t
                       (3) 

 

which can be decomposed into two steps 
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 coll
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f
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t
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Streaming : ( , 1) ( , ),  
  coll

i if r e t f r t                      (5) 

 

where if  is the particle distribution function and 

r  a spatial 

variable. In this paper,   
coll

f t  is the Bhatnager-Gross- 

Krook (BGK) collision model [40-43], with a body force 

F , 

expressed as 

 

2

1
.[ ( , ) ( , )] . ,

 
    

 

  eq
i i i

coll

f D
f r t f r t F e

t bc
      (6) 

 

where D  is the grid dimension, b  the link number at each grid 

point, c  the length of each link which is set to 1  in this paper 

and   represents the relaxation time. eq
if  is the local 

Maxwell-Boltzmann equilibrium particle distribution function 

expressed in its continuous form as 

 
2

3 2 ( )
(2 ) exp{ },

2

  


 
eq u

f RT
RT


                     (7) 

 

where 

  is the particle velocity and 


u  the macroscopic 

velocity. The equilibrium distribution can be expressed in 

discrete form as follows when modeling typical diffusion 

phenomenon, 
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Fig. 2. Spatial structure of the D2Q5 LBM lattice 

 

where   is the macroscopic fluid density. By performing the 

Chapman-Enskog expansion [44], the following diffusion 

equation can be recovered from the lattice Boltzmann evolution 

equation [38], 

( ) .


  


div F
t


                              (9) 

 

Substituting   by the signed distance function   in Eq. (9), 

the LSE can be recovered. In our model we use the D2Q5 

( 2D , 5b ) LBM lattice structure. Fig. 2 displays a typical 

D2Q5 model where each link has its velocity vector ( , )


ie r t . 

The body force F  acts as the link with image data for the LBM 

solver. 

Reference [45] used another approach to perform the level 

set image segmentation. Eq. (3) is the general evolution 

equation of the LBM; however in level-set-based image 

segmentation a stop function ( )


g r  is necessary to stop the 

evolving curve or surface at the boundaries of the object. In 

order to introduce the stop function into the LBM, the authors 

considered a medium between the nodes of the lattice. The 

particles can pass through the medium with a possibility of 

( )


ig r , and will be pushed back to where they were with a 

possibility of 1 ( )


ig r . The LBM evolution equation is 

modified as 

 

1
, 1 )[ , [( , , ] ]

(1

) ( ( ) ( ) ( )

() )( ) , ,

     

  





    

 

eq
i i i i i i

i i i

f r e t g r f r t f r t f r t

g r f r e t


     (10) 

 

where   is the convection coefficient. The macroscopic fluid 

density   is set as a signed distance function. More details 

about this approach can be found in [45]. 

III. THE PROPOSED HYBRID LEVEL SET FRAMEWORK FOR 

TWO-PHASE IMAGE SEGMENTATION 

This section is dedicated to the conception and analysis of the 

proposed algorithm. We first design a novel energy functional, 

which will be minimized using the level set framework. 

Let 𝜙:Ω → ℝ be an LSF defined on a domain  . In all our 

work   is a signed distance function positive inside the zero 

level contour   and positive outside. The introduced energy 

functional is defined as follow 
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( ) ( ) ( ), main RegularizationE E E               (11) 

 

where ( )mainE   is the main energy term which contains the 

regional information of the image to be segmented, 

( )RegularizationE   is the constraint on the smoothness and the 

length of the evolving contour. 

By using the gradient descent method, the LSE can be 

recovered from the above defined energy function 
 

 

,
 

 
 

E

t




                                     (12) 

 

where  E   is the Gâteaux derivative [46] of  . According 

to Eq. (11), Eq. (12) is equivalent to the following evolution 

equation 
 

( )
.


  
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Regularizationmain
EE

t



 
                (13) 

 

A. Design of ( )mainE    

The main energy term ( )mainE   has been designed so that: 
 

1- It is inherently local in order to suit to massively parallel 

architecture, 

2- Its minimization yields to an effective and accurate 

image segmentation even in the presence of outliers. 
 

( )mainE   is therefore defined as 

 
2

1 1

2

2 2

( ) (1 exp{ ( ( ) ) }) ( )

(1 exp{ ( ( ) ) })(1 ( ))

( ),

main

Outliers

E I x P H dx

I x P H dx

E

   

  







   
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



  (14) 

 

Where OutliersE  is the energy to be minimized in order to make 

the method robust against outliers, H  is the Heaviside 

function, x  a spatial variable,   and   are user controlling 

positive constants, 1  and 2  are important parameters which 

can lead, if wrongly chosen, to an over or under segmentation 

result. In this work, we used 1 2 1   . The values of 1P  and 

2P  are obtained as follows. The interior and the exterior 

intensity average of the initial active curve are used to initialize 

a two-phase k-means algorithm, 1P  and 2P  are the mean 

values of the two final classes obtained. This part constitutes 

the serial part of our algorithm, and it is fast since 

computational efficiency is one of the main advantages of the 

k-means algorithm. 

The derivative of ( )mainE   with respect to   can therefore 

be formulated as 
 

2
1

2
2

( )[ (1 exp{ ( ( ) ) })

(1 exp{ ( ( ) ) })] .

main
in

Outliers
out

E
I x P

E
I x P

   


 



   




    



       (15) 

In [26], we had defined an efficient energy term based on a 

2D gray-scale histogram which can make the LSM more robust 

by avoiding the evolving curve stopping at the pixels which are 

more likely to be outliers. This energy term was defined as 

follows 
 

2 1 2( ) ( )

.exp{ ( )} ( ) ,





  

 

D hist

mean

m m I

I I H dxdy

  

  


        (16) 

 

where meanI  represents the local average,   and   are 

user-controlling parameters,   and   are positive constants, 

1m  and 2m  are respectively the mean intensity values inside 

and outside the active contour and have to be computed at each 

iteration as follows 
 

1 ( , ) ( ) (  ) ,m I x y H dxdy H dxdy 
 

              (17) 

 

2 ( , ) (1 ( )) (1 ( )) .
 

    m I x y H dxdy H dxdy       (18) 

 

In this work, inspired by the energy term defined in Eq. (16), 

we define OutliersE  as follows 

 

1 2

2

1 2 1 1

2

2 2

( ) ( , ) exp{ ( )} ( )

( , ) (1 exp{ ( ( ) ) })

(1 exp{ ( ( ) ) }),

Outliers meanE A P P I I H dx

with A P P I x P

I x P

   

 

 



  

   

   



   (19) 

 

A straightforward analysis of OutliersE  shows that the effect of it 

minimization is to make the present method robust against 

outliers by avoiding the evolving curve stopping at pixels for 

which the intensity value is far different from their local 

intensity average, that is, high gradient isolate pixels. The 

derivative of OutliersE  with respect to   can therefore be written 

as follows 
 

1 2[ ( , )exp{ ( )}] ( ),Outliers
mean

E
A P P I I   




  


    (20) 

 

By adding this term in the main energy, we finally get the 

following equation 
 

1 2( ) ( , )[1 exp{ ( )}].


   


main
mean

E
A P P I I   


   (21) 

 

B. Design of ( )RegularizationE    

In traditional LSM, the regulation term used as a constraint on 

the area and the length of the active contour [29] is expressed as 

 

( ) ( ) ( )

( ) ( ) ,

Area LengthE E E

H dx H dx

  

   
 

 
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              (22) 
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where   and   are user controlling parameters. Its derivative 

with respect to   is expressed as 

 

( ) ( ) ( ).

LengthArea
EEE

div

  

      


 

  

   

                  (23) 

 

In this paper, we introduced a local statistics-based constraint in 

the classical regularization term. Therefore, the modified 

regularization term is expressed as follows 

 

( ) ( ) ( ) ( )

( ) ( ) ( exp{ }) (1 ( )) ,

 



   
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 



RegularizationE H dx H dx C

with C sign I H I H dx

     

   

 (24) 

 

where   and   are positive parameters. The term ( )C   is 

designed in order to attract the evolving curve towards the 

sectors of the image domain where the gradient is medium or 

high. Since the LSF   is defined so that it is positive inside the 

zero level contour and positive outside. A straightforward 

analysis of ( )C   leads to the following conclusion, 

 

1) 0 ( ) 0,

exp{ } ( ) ( )
2) 0

exp{ } ( ) 0.

  

     
  

   

C

if I C sign I

if I C

 

  


 

 

 

We can therefore notice that when the curve is evolving, ( )C   

is different from zero and has the sign of I  when the curve is 

on a pixel for which exp{ } I  . This makes the curve 

expands or contracts in order to evolve toward higher gradient 

pixels. 

But since ( )mainE   is designed so that the evolving curve 

cannot stop on high gradient pixels, in order to make the 

proposed model robust against outliers, the designed 

regularization term will increase the ability to detect objects 

delineated by medium edges and weak edges depending on the 

threshold parameter  . The derivative of the proposed 

regularization term with respect to   can be written as follows 

 

( )[ ( )

( ) ( exp{ })].

RegularizationE
div

sign I H I

     


 


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

   

         (25) 

 

Finally, we obtain the following LSE 
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
   

     

 

 
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
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   

  (26) 

In order to extend the evolution to all the level set of  , the 

gradient projection method [47] allows us to replace ( )   by 

 . To maintain the suitability to parallel programming of our 

model, we use the local LBM to solve the obtained LSE. By 

setting   as a signed distance function, that is, 1  , and 

constraining it to stay like that, Eq. (26) can be written as follow 

 

1 2( , )[1 exp{ ( )}]

( ) ( exp{ }) ( ),

meanA P P I I
t

sign I H I div


 

    


    



      

   (27) 

 

which is similar to Eq. (9) with the body force expressed as 

 

1 2( , )[1 exp{ ( )}]

( ) ( exp{ }).

    

    

meanF A P P I I

sign I H I

 

  
          (28) 

 

The proposed LSE can therefore be solved using the following 

lattice Boltzmann evolution equation 

 

2
1 2

( , 1) ( , ) (1 )[ ( , ) ( , )]

( ( , )[1

exp{ ( )}]

( ) ( exp{ })),

    

 

   

   

    
i i i i i

mean

f r e t f r t f r t f r t

D bc A P P

I I

sign I H I



  

 

    (29) 

 

without the necessity to explicitly calculate the computational 

expansive curvature term since it is implicitly handled by LBM.  

Fig. 3 illustrates the flowchart of the proposed level set based 

algorithm, where we can clearly distinguish which part is 

executed on the CPU and which one on the GPU. 

 

The principal implementation steps of the proposed method 

are as follows: 

 

Input: Initial zero level contour   (signed distance 

function),  ,  ,  ,  ,  ,   and  . 

Output: The final zero LSF contours  . 

Algorithm Steps: 

1 Run the k-means algorithm with the interior 

and exterior means of the initial active curve as 

initial values. 

2 Compute the body force F  with Eq. (28). 

3 Resolve the LSE using LBM with Eq. (29). 

4 Accumulate the ,( )


if r t  values at each grid 

point with Eq. (8), which generates updated 

values of . 

5 Find the contours (zero level contours of the 

LSF). 

6 If the algorithm has not converged, i.e., 

1 510  t t  , go back to step 3. 
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Fig. 3. Flowchart representing the process of the proposed algorithm. 
 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

This section demonstrates the performance of the proposed 

architecture-driven level set image segmentation method 

(A-DLSO) both in terms of efficiency and effectiveness. 

A. Experimental setup 

The experiments environment is the parallel computing 

toolbox of Matlab R2013a installed on a laptop Aspire 

V3-571G with an Intel Core (TM) i3-2348M (2.3GHz, 3MB L3 

cache) processor and possessing a GPU NVIDIA GeForce 

710M with 2GB dedicated VRAM. The executive time in all 

the experiments invoking the graphics card includes the 

transfer time of data from the CPU to the graphics card and vice 

versa. In this work, we have empirically set the parameters. In 

all the experiments, the chosen parameters are those who give 

the highest F-measure average. For our model, we fixed 

0.01 , 0.2 , 5 , 5 , 2 , 0  and 5 . 

The optimized Matlab function arrayfun is used to execute 

the A-DLSO, the CV and the HZ code on the GPU. For 

example, the body force of the A-DLSO is computed using the 

following instructions 
 

 

1- Id = gpuArray(I); 
2- Imeand = gpuArray(Imean); 
3- Fd = arrayfun(@Body_force,Id,Imeand). 

 

The first and the second instruction transfer respectively 𝐼 and 

 from the CPU to the GPU, while the third instruction 

computes the body force on the GPU using the kernel function 

Body_force.m programmed according to Eq. (28). Since all the 

output arguments are stored in the GPU memory, the function 

gather is used to transfer them back from GPU to CPU. 

 To best use the GPU capability, we restructure our code in 

order to maximally reduce the number of loops by using code 

vectorization technic. A good explanation of this method can be 

found in Matlab online support. 

 In this work, The GPU task and thread assignments are 

automatically handled by Matlab. Nevertheless, we should 

notice that the introduced model could be considerably faster 

by using the CUDA framework with our own task and thread 

management strategies. Furthermore, since the curve evolution 

is fully local, the use of CUDA kernels can provide a big 

speed-up, for example the collision step of the LBM can be a 

good candidate. 

The supervised objective evaluation is undertaken using the 

F-measure based on precision and recall. It measures the 

similarity between two images. The higher it is, the better the 

segmentation result. It is formulated as follows [48-49]  

 
2 2[(1 ) ] ( )

( )

( ) ,

F R P R P

with R True Positive True Positive False Negative

and P True Positive True Positive False Positive

      

 

 

 (30) 

 

where R and P  are, respectively, recall and precision,   is 

usually set to 1 . 

In order to better allow the subjective evaluation, we 

presented the results of all the methods that we used in two 

forms, by binary images and by only contours. To obtain the 

binary representation, the interior of the obtained contour is 

represented by white pixels and the exterior by black pixels. 

The blue triangle is the initial contour. The dimensions used are 

450 948 , with the exception of Fig. 4 where the dimensions 

of the image are of 948 450 . 

The proposed method and all the methods used for 

comparison were run using the intensity information I of color 

images, which was obtained by performing a weighted sum of 

the R, G and B components as recommended by the 601  

resolution of the International Commission on Illumination 

(CIE), 
 

0.2989 0.5870 0.1140 .     I R G B         (31) 
 

B. Experimental results 

In this section we compare the introduced framework with the 

following methods 
 

1- the recent parametric kernel graph cuts (PKGC) based 

image segmentation method introduced by Ben Salah and 

Mitiche in [50]; 

2- the region-based ACM (CV) introduced by Chan and Vese 

in [29]; 

3- the two-phase fuzzy c-means (FCM) clustering method; 

4- the two-phase k-means clustering algorithm; 

5- the local ACM (HZ) introduced by Hagan and Zhao in 

[51]; 

6- the ACM for image segmentation in the presence of 

intensity inhomogeneities introduced by Li et al. in [13]; 

7- the fast ACM (GF) described by Gibou and Fedkiw in 

[36]. 
 

Fig. 4 gives evidence of the way the proposed method 

improves clustering algorithms by allowing them to achieve 

sub-pixel accurate segmentation with smooth and closed 

contours. In this work, we used the mean values of the two final 

classes obtained by the k-means algorithm. Nevertheless, 

another clustering algorithm, such as the FCM or support 

vector machine (SVM), can be used. Fig. 6 (a) displays the 

original image with human segmentation as ground truth. As 

meanI
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we can see from Figs. (b) and (c), more useful contours are 

detected by our model. In Fig. 6 (d), we superimposed the 

k-means segmentation result with the final level set contour of 

the proposed algorithm represented in red. We can see that the 

contour is closed, smoother, and the F-measure, comparing the 

result with human segmentation, gives a score of 89.95 % for 

our introduced framework and only 77.09% for the k-means. 

Thus, the result obtained by our model is far better in term of 

accuracy. This is an ineluctable proof on how it can greatly 

improve the quality performance of two-phase clustering 

algorithms. 

Fig. 5 demonstrates the robustness of the proposed method 

against outliers. In this experiment, we simulated outliers using 

salt and pepper noise with different density values. The 

comparison with the k-means algorithm clearly shows the 

superiority of the proposed framework. The last row shows that 

even if the k-means fails, the A-DLSO is able to achieve a 

pretty good segmentation thanks to the use of local statistics, 

and the constraints on the area and the length introduced during 

the curve evolution. 

From Fig. 6 to Fig. 8, we challenged the proposed algorithm 

using the PKGC, the CV, the FCM, the k-means, the HZ, the Li 

and GF methods. The results of the supervised objective 

evaluation are displayed in Table I and the 3D histogram of Fig. 

9. The executive times of the serial implementation on the CPU 

of all the algorithms used in this section are presented in Table 

II. Finally, the executive times of the GPU-based 

implementation of the A-DLSO, CV and HZ are displayed in 

Table III. 

According to Table I, it can be seen that in almost all the 

experiments the proposed algorithm has the highest average 

F-measure, i.e., the produced result is the closest to human 

segmentation used as ground-truth. The subjective evaluation 

also confirms the superiority of the our model since it extracted 

more useful, thin and non-discontinuous contours. While the 

CV method got trapped in local minima, like in Fig. 6 (b), Fig. 6 

(c) and Fig. 7 (b), the proposed method gives very good results 

which confirms its robustness against initialization, and 

therefore its suitability to automatic systems. Comparing with 

the A-DLSO, the HZ method presents lower performance, for 

example in Fig. 6 (a) and Fig. 8 (b), where it gives 

over-segmentation results. In many cases, the Li method also 

gives over segmented results, as demonstrated by Fig. 6 (a), Fig. 

6 (c) and Fig. 8 (c). The GF method is less effective than the 

A-DLSO, particularly when it comes to detecting steep corners, 

or in terms of global segmentation like in Fig. 6 (b), Fig. 6 (c) 

and Fig. 7 (b). In comparison with the ground-truth, the 

A-DLSO gives better results than the parametric kernel based 

method, PKGC. As with the k-means clustering algorithm, the 

FCM and its derivatives can also be improved by our 

framework. 

When comparing the executive times displayed by Tables II 

and III, we can see that even when serially implemented on the 

CPU, the proposed LSM is faster than almost all the methods 

used in these experiments. Aside from the k-means algorithm, 

only the HZ method, which uses a very simple speed function, 

is faster than the introduced method, but the quality of its 

results is far lower. The A-DLSO is far faster than the CV and 

the Li based LSM. In almost all cases, it is more than one 

hundred times faster than the CV method, and more than eighty 

times faster than the Li method. A straightforward analysis of 

the executive times of the GPU-based implementation evinces 

that the curve evolution part of the introduced method has been 

accelerated more than ten times compared to its serial version 

on CPU. This is a strong proof of its suitability to massively 

parallel architecture. The CV method which is non-local, 

because of the computation of the interior and exterior means of 

the active curve at each looping, has been accelerated only 

roughly two fold. Overall, we can conclude that the introduced 

A-DLSO presents very attractive performance in terms of 

speed comparing with level set based models. 

Fig. 10 proves the robustness of the A-DLSO to initialization. 

It can be seen that from different initial contours, the proposed 

methods quietly produces the same finally good result, while 

the CV method is almost always trapped into a local minimum. 
 

Table I. STATISTICAL RESULTS OF THE OBJECTIVE EVALUATION USING 

F-MEASURE (%). 

Methods Average Standard deviation 

A-DLSO 90.7841 0.9028 

CV 78.0608 2.7437 

HZ 76.1850 1.5957 

k-means 79.0566 1.0073 

FCM 79.9786 0.8641 

PKGC 83.1696 0.8743 

Li 81.7851 1.9599 

GF 78.1173 1.6935 

V. CONCLUSIONS AND PERSPECTIVES 

This work presents an effective and efficient level set based 

image segmentation framework suitable for heterogeneous 

CPU-GPU architecture. The method which is also fast when 

serially implemented on the CPU, allows considerably 

improving the quality of the segmentation results obtained 

using most two-phase clustering algorithms such as SVM, 

k-means, FCM and their derivatives. Thus, by combining the 

advantage of LSMs and clustering methods, the A-DLSO is fast, 

gives smooth contours with sub-pixel accuracy, and can easily 

handle complex shapes. Its robustness to initialization makes it 

a good candidate for automatic systems. Intensive experiments 

demonstrate the good performance of the proposed method. 

Future works will cover an extension of the A-DLSO to 

multiphase image segmentation, while conserving its intrinsic 

locality. The memory complexity aspect will also be considered, 

since it is one of the limits of the LBM used to solve the 

proposed LSE. Furthermore, some research on A-DLSO 

automatic parameterization will be carried out using some 

machine learning technics. 
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Fig. 6. Segmentation of real-world images. The first row presents the original images with the initial contour, and the corresponding human segmentation as 

ground truth. The second row presents the results of the proposed algorithm. The third row presents the results of the k-means clustering method. The fourth row 

presents the results of the FCM clustering method. The fifth row presents the results of the PKGC method. The sixth row presents the results of the CV method. The 

seventh row presents the results of the HZ method. The eighth row presents the results of the Li method. The last row presents the results of the GF method. For all 

the methods, the results are presented in two ways, i.e., by contours and binary images. 
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Fig. 7. Segmentation of real-world images. The first row presents the original images with the initial contour, and the corresponding human segmentation as 
ground truth. The second row presents the results of the proposed algorithm. The third row presents the results of the k-means clustering method. The fourth row 
presents the results of the FCM clustering method. The fifth row presents the results of the PKGC method. The sixth row presents the results of the CV method. The 
seventh row presents the results of the HZ method. The eighth row presents the results of the Li method. The last row presents the results of the GF method. For all 
the methods, the results are presented in two ways, i.e., by contours and binary images. 
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  (a)   (b) 
Fig. 8. Segmentation of real-world images. The first row presents the original images with the initial contour, and the corresponding human segmentation as 
ground truth. The second row presents the results of the proposed algorithm. The third row presents the results of the k-means clustering method. The fourth row 
presents the results of the FCM clustering method. The fifth row presents the results of the PKGC method. The sixth row presents the results of the CV method. The 
seventh row presents the results of the HZ method. The eighth row presents the results of the Li method. The last row presents the results of the GF method. For all 
the methods, the results are presented in two ways, i.e., by contours and binary images. 
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Fig. 9. 3D histogram showing the supervised objective evaluation. The vertical axis represents the F-measure, while the horizontal axis represents the evaluated 

methods. 

 
 

 

(a) 
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Fig. 10. Segmentation of a satellite image of Xinjiang in China with different initial contours. The results are presented in two ways, i.e., an image where the 

resulting contour is held on the original image, and a binary image which represents the interior of the final LSF by white pixels and the exterior by black pixels. (a) 

Initial Contours. (b) Results of the proposed method. (c) Results of the CV method. 
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