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ABSTRACT  
The great evolution of communication technologies and potential availability of network access mediums and service providers 
have led to the appearance of heterogeneous network concept. This paradigm refers to the seamless and ubiquitous 
interoperability between multi-coverage protocols with different access techniques. A heterogeneous vehicular network 
(HetVNet) is a heterogeneous network where a vehicle is a smart node equipped with various communication technologies such 
as Dedicated Short Range Communication (DSRC) and cellular network (3G/4G). The purpose of HetVNet is ensuring a wide 
area coverage to all vehicles in a large scale network, thus achieving the Always Best Connected (ABC) paradigm where the best 
continuous connectivity is offered to clients. In addition, HetVNet enables the acquisition and processing of a large amount of 
data from wide geographical areas via smart vehicles to offer various categories of services to drivers and passengers. There are 
many challenges in HetVNet and security is one of them since, in one hand, vehicles exchange vital data (about congestions, 
accidents, hazards, road-works, etc.) and in the other hand they form a specific network with particular characteristics (frequent 
fragmentation, dynamic topology, no centralized authority, etc.). Intrusion detection systems (IDS) act as a second wall of defense 
when cryptography is broken and already proved their effectiveness against both external and internal intruders. Therefore, in this 
research work we propose and implement an intrusion detection and prediction scheme able to detect and especially predict the 
future misbehavior of a malicious vehicle. The attack prediction technique proposed in this paper is based on a game theory to 
prevent the occurrence of malicious vehicles. Moreover, the proposed detection scheme detects the most dangerous attacks that 
target a HetVNet such as false alerts and Sybil attacks. This detection uses a rules-based technique to model a normal behavior of 
a vehicle. Simulations performed using NS-3 show that our scheme exhibits a high accuracy prediction, faster attack detection, 
and a low communication overhead compared to current detection frameworks. 

Keywords: HetVNet, Game model, Intrusion detection, Intrusion prediction, Accuracy prediction. 

I. INTRODUCTION  
The unprecedented growth of sensing devices and communication technologies has led to the increase of the number of connected 

vehicles. According to recent statistics, in 2020, a significant number of smart vehicles will be deployed where a variety of 

Intelligent Transportation System (ITS) applications will be provided such as traffic efficiency and infotainment [1]. To benefit 

from these services and a continuous Internet connectivity, these smart vehicles are featured with a variety of heterogeneous 

communication technologies such as Dedicated Short Range Communication (DSRC) and cellular network (3G/4G) [2]. The 

vehicular network, composed of such smart vehicles and also known as Heterogeneous Vehicular Network (HetVNet), supports 

well the requirements of the different ITS applications since by combining these communication technologies, a wide area 

coverage and a good quality of service (QoS) is achieved and ensured, respectively [3]. Hence, in HetVNet, the vehicle is a smart 

node equipped with a computation unit, a set of sensors, and different communication mediums to exchange data with either other 

vehicles or the infrastructure [3].  

The success of heterogeneous vehicular networks depends mainly on the underlying communications system, and particularly the 

information security since the vehicles exchange, in one hand, vital data (about congestion, accident, hazard, road-works, etc.) and 
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in the other hand form a specific network with particular characteristics (frequent fragmentation, dynamic topology, no 

centralized authority, etc.). Intrusion detection system (IDS) is a security mechanism that has the ability to detect a malicious 

behavior that targets the network and raises an alarm when the intruder is detected [4]. It acts as second wall of defense when 

cryptography is broken and already proved its effectiveness against both external and internal intruders. Such system aims to 

detect cyber-attacks with a high accuracy, such as Denial of Service (DoS) and false alert’s dissemination attacks. Recently IDS 

was used in both Vehicular Ad Hoc Networks (VANET) and HetVNet to detect and eject any threats that target such networks 

[5][6]-[9][10][11]. The intrusion detection frameworks proposed in [5][6]-[9] take a final decision (i.e. categorize the vehicle as 

normal or attacker) based only on the current behavior of a target vehicle. However, the behavior of a malicious node could 

switch in the future to a normal mode, and keeps this mode throughout its lifetime. In this case, it is interesting to not eject it 

directly especially when the network is sparse.  

In this paper we propose an efficient attack detection and prediction scheme that aims to detect and especially predict the future 

misbehavior of a vehicle. Our scheme relies on game theory concept to predict the misbehavior of an attacker. The attack-defense 

problem is formulated as a game between two players: the Attacker (i.e. misbehavior vehicle) and the Services Centre (SC). 

Based on Nash Equilibrium (NE) concept, we predict the future behavior of monitored vehicles. Moreover, our intrusion detection 

scheme has the ability to detect the most dangerous attacks that target the HetVNet; we cite for instance False alert's 

dissemination and Sybil attacks. The proposed scheme is based on a rules-based detection technique to model vehicles’ normal 

behavior and hence identify any misbehavior that occurs. According to the simulation results, it outperforms other intrusion 

detection schemes in terms of accuracy prediction, detection time and communication overhead. These results are achieved even 

when the number of vehicles and malicious vehicles are high.  

This paper is organized as follows: In Section 2, we describe the current intrusion detection frameworks for HetVNet and 

VANET. Section 3 describes both the network architecture and the attack models that target such HetVNet network by providing 

the detection techniques to detect them. Section 4 describes our misbehavior's prediction approach based on games theory and 

Section 5 presents NS3 simulation results and analyzes them. Finally, a conclusion and discussion on future works are presented 

in Section 6. 

II. RELATED WORK

The IDS technique is very effective in protecting the network against malicious nodes [4]. However, the current IDS frameworks 

conceived for HetVNet and/or VANET [5][6]-[9][10][11] take a final decision (i.e. the vehicle is a normal node or attacker) based 

only on the current behavior of a target vehicle. In [8], the authors propose a scalable reputation and trust-based framework that 

assigns to each monitored node a reputation value that depends on the performed action. In their research, they focus on detecting 

a false warning message generated by an attacker. Furthermore, according to a reputation value, the monitored node is categorized 

into one of these classes: not trust, +/- trust and trust. In their simulation, the authors prove that their framework is accurate to 

detect malicious vehicles. However, they don’t make an extensive set of simulations to make their contribution worthwhile, as 

they don't evaluate, for instance the false positive and overhead. In [9], the authors propose a stochastic learning solution for 

intrusion detection (SLAID) to identify the current attacks that occur in VANET. In this research, the attacker that disseminates 

false information is detected. According to their experimental result, their system exhibits a high detection rate. However, the 

main weakness of this system lies in the fact that it generates a high overhead since such heavy learning is embedded at every 

vehicle. In addition, this system is not applicable for real-time applications because the learning algorithm requires a certain time 

to model a normal pattern of a target node. In [7], the authors propose a data-centric detection system (DCMD) to identify the 
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cyber-attacks that disseminate the false message alert, e.g. Post-Crash Notification (PCN) alert. They propose a rule-based 

detection technique to model the normal behavior of a target vehicle.  In case, when the action that a monitored vehicle performs 

does not match this modeled behavior, it will be suspected as a node that disseminates a false alert message. According to their 

simulation result, their system requires a low communication overhead to detect these cyber-attacks. However, they do not 

evaluate the security performance when such attack occurs, e.g. detection rate. In [12], the authors propose a security system to 

detect the intruder that generates a false Post Crash Notification alert. The vehicle near a crash area issues this notification later. 

As in [7], authors model the vehicle's expected behavior after the alert generation and compare it with the real action followed by 

the vehicle. According to their simulation results, their system exhibits a low false negative and false positive rates when the 

attacks occur. The major drawback of this detection scheme is the fact that the authors claimed that the position information sent 

in the alert is correct when the false alert is generated. However, this assumption is not correct in some cases since the intruder 

could provide false information in order to not be identified.  

In [5][13], the authors design a secure cluster-based vehicular networks (IDFV) scheme that aim to build safe clusters based on 

the trust level of monitored vehicle, i.e. the vehicle with the highest trust level play the role of cluster-head. According to their 

simulation results, the cyber-attacks such as denial-of-service (DoS) are detected with a high accuracy. However, the major 

weakness of IDFV is the high-generated communication overhead, specifically when the number of misbehavior vehicles is high.  

To the best of our knowledge, the Intrusion Prevention and Detection System (IPDS) [14] is the only publicly available work to 

deal with the misbehavior’s prediction in HetVNet. IPDS is based on Kalman filter to predict the future behavior of vehicles. This 

mechanism organizes the network into 1-hop clusters where the trustworthiness vehicle is chosen to be a Cluster Head (CH) and 

monitors its neighbors and predicts their behaviors. To increase the prediction accuracy, authors have chosen to designate some 

specific vehicles in every cluster called recommenders to collect trust levels about their neighbors and send them to the CH. The 

IPDS exhibits a high prediction rate and low communication overhead. However, the major weakness of this system is its high 

generated false positives rate. 

In this paper, we develop an accurate intrusion prediction and detection scheme that handles the weaknesses of the intrusion 

prevention and detection schemes proposed in the current literature. The objective of this work is to propose a new security 

mechanism based on game theory to promptly detect and particularly predict the future misbehavior of attackers with high 

prediction rate and low number of false positive.   

III. NETWORK ARCHITECTURE AND INTRUSION DETECTION TECHNIQUE 

In this section, we present the HetVNet architecture with a focus on the application scenario that we attempt to secure. 

Afterwards, we give an overview of the different attack models with their corresponding detection policies.  

A. Network architecture and general security assumptions 

As shown in Fig 1 an HetVNet architecture includes mainly three components[3][15]: The vehicle with its on-board unit (OBU) 

equipped with heterogeneous communication interfaces like DSRC and 3G/4G interfaces, the Infrastructure (Road Side Unit - 

RSU or eNodeB) and the Cloud with its Services Centre (SC). The communication in a HetVNet is either between vehicles (V2V) 

or with the infrastructure (V2I). Transport Layer Security (TLS) protocol is used by RSU and eNodeB to communicate with SC 

through the cloud as shown in Fig 1. TLS has the ability to ensure data confidentiality and node authentication [16]. The SC 

offers a couple of services to the vehicles through I2V and V2V communications [17]. These services are various and range from 

road safety to other useful services for drivers/passengers. Most of the safety-oriented HetVNet applications rely mainly on alert 
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messages dissemination to inform vehicles when an event (e.g. road accident) is detected. Among alert messages, we can cite for 

instance Post Crash Notification (PCN) and Emergency Electronic Brake lights (EEBL) [7]. In this research work, we use a 

dissemination protocol proposed in [2] to broadcast an alert when an event occurs. In this protocol, the vehicle that receives a 

packet, retransmits it at most once [18] to the next forwarder selected as the farthest node from the sender [19][20]. Vehicles 

obtain next forwarder's information through an embedded GPS device and through periodic exchange of neighbors' beacons [20]. 

Fig. 1. The targeted HetVNet architecture. 

In this HetVNet, security is one of the main issue specifically for safety-oriented applications and a reliable security mechanism 

becomes mandatory. Therefore, in this paper, we develop an efficient intrusion detection and prediction scheme that aims to 

identify and predict a future misbehavior of an attacker. To identify a misbehaving vehicle, an Intrusion detection agent (IDA) is 

activated at each vehicle to monitor its neighbors. When a node is suspected to carry out an attack, the IDA sends a message (i.e. 

suspect list) either to RSU or eNodeB depending on the context, i.e. depending on user preferences, service requirements, and the 

network manager responsible of handover decision [2]. Afterward, the selected infrastructure (i.e. RSU or eNodeB) forwards the 

suspect list to the SC through cloud for further analysis (see section IV). 

 Let’s mention that the intrusion detection system has not acquired the ability to ensure the communication privacy [21]. 

Therefore, we opted to use Elliptic Curve Cryptography (ECC) provided by the current VANET standard [22] to provide 

communication privacy and ensure source authentication [23][24]. In our scheme, each vehicle is equipped with private and 

public keys. The elliptic curve digital signature algorithm (ECDSA) is adopted to authenticate the vehicle identity. Each vehicle 
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that wants to communicate with a neighbor or with an infrastructure, signs a message using its private key to generate an ECDSA 

signature as illustrated in Fig 2.  In addition, the elliptic curve integrated encryption scheme (ECIES) is applied to encrypt the 

message and hence ensure data confidentiality. The vehicle encrypts a message with a public key of its neighbor that wants to 

communicate with; and the neighbor decrypts the message using its private key. Furthermore, for confidentiality of subsequent 

communications between the vehicles or between the vehicle and infrastructure, a session key  is generated by the two 

parties, as illustrated in Fig 2. This session key is generated by using an elliptic curve diffie–hellman (ECDH).  

Fig. 2. The main steps to ensure the source authentication and data confidentiality 
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In safety-oriented HetVNet applications, alert messages are generated to ensure the safety of persons, vehicles and infrastructure. 

However, the attacker could broadcast a false alert in order to cause a critical disaster (e.g. road accident). Therefore, in this paper 

our aim is to prevent the occurrence of such misbehavior by monitoring the vehicles’ behavior before, during and after the alert. 

We focus here in post-crash notification (PCN) alert where a vehicle involved in an accident broadcasts a message to vehicles 

around until the accident is cleared [7]. To detect a misbehaving vehicle, a mutual monitoring concept is applied. This latter 

means that each vehicle monitors the behavior of its neighbors since all vehicles within a network could be malicious and could 

launch an attack. Each vehicle has the ability to play an IDA agent role. However, only an optimal number of vehicles activate 

their IDA agents. In fact, when a high number of IDAs activate their monitoring process, the overhead highly increases and as a 

consequence the network performance decreases. Therefore, the activation strategy proposed in our recent work [21] is used. 

Here, at the beginning all vehicles activate their IDA agents.  Afterward, when a suspected vehicle is detected only the closest 

vehicle to this suspected node still monitors it during a predefined period (defined as a monitoring period ) and the other IDSs 

switch to the idle mode (i.e. do not monitor). When this period has elapsed, the active IDS switches to idle model and another IDS 

node (the closest one) activates its monitoring within the same period. This process is continued until the malicious vehicles is 

ejected from the network.  

To identify the attackers that disseminate false alerts, a set of rules is proposed to model a normal vehicle behavior as explained in 

the following:  

The IDA agent relies on a promiscuous mode to monitor the vehicle that disseminates an alert about an event (e.g. accident or 

road conditions). According to [7], when a monitored vehicle disseminates a PCN alert, its lane and speed should change and 

decrease, respectively. Therefore, the IDS agent will monitor the used lane and the speed of a target vehicle before, during and 

after the dissemination of the alert.  As shown in Fig 3, the vehicle v disseminates regularly to its neighbors a Cooperative 

Awareness Message (CAM) that includes its position ( , ), time when CAM message was disseminated (  and

speed ( ). As cited above when an event is detected (e.g. accident), a PCN alert is broadcasted by v. This alert contains 

the current position of vehicle v ( , ), time when the alert was generated ( ) and speed ( ). The IDA 

agent , that receives these messages (i.e. CAM and alert) from the monitored vehicle v, computes the vehicle’s v speed 

( ) between the time when it receives the CAM message and the time when it receives the subsequent alert message, and 

computes the vehicle’s v speed ( ) between the time when it receives the alert message and the time when it receives 

the subsequent CAM message.  

The vehicle v is considered as a normal node when it changes the lane and the equation (1) holds. Otherwise, it will be suspected 

as an attacker that disseminates a false PCN alert. 

We note that the attacker could provide a false position defined as a Sybil attack and sends a false speed (e.g.  and 

) defined as integrity target attack. Therefore, to identify these attacks the detection policy proposed in our recent work 

[21] is applied. To detect Sybil attack, the position verification method proposed in [21] is used. This method is based on Signal 

 (1) 
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Strength Intensity (SSI) and Round Trip Time (RTT). Furthermore, to detect the attack that targets the packets integrity, the 

messages that are interchanged between target vehicles are monitored and hence the message alteration is verified.  

When the IDA agent detects that a monitored vehicle exhibits a malicious behavior, it stores in the suspect list the following 

information: IDA's identity, identity of misbehaving vehicle, attack type and detection time. This list will be sent to the 

infrastructure (i.e. RSU or eNodeB) as shown in Fig 3. Afterward, the infrastructure forwards the suspect list to the SC through 

cloud. 

 Fig. 3 Detection's process 

The SC computes the attack probability (AP) related to each monitored vehicle v during a monitoring period  as shown in 

equation (2). We note that, a set of 's values were used and we chose the one that allows us a  high accuracy prediction rate and 

less detection time, see Table V.  

 

where,  (equal to k) is the number of IDA agents that suspect a monitored vehicle  as a misbehavior node,  

is the efficiency of detection  and s is the number of v 's neighbors during . 

Based on game theory approach, the SC determines the future misbehavior of a malicious vehicle and categorizes it into the 

appropriate list according to the action it performs. The misbehavior's prediction approach is explained in the following section. 

IV. PROPOSED MISBEHAVIOR'S PREDICTION SOLUTION GAME 

In this research work, we choose a game theory approach for misbehavior's prediction and according to a future misbehavior of a 

suspected vehicle, the SC categorizes this vehicle in one of the following lists: Green, Yellow, Red and Black. In our model, we 

consider two players, the SC and the vehicles. In the following, we first provide the payoff game between these two players.  
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Afterwards, based on Nash Equilibrium (NE) concept, we show how to predict the misbehavior of monitored vehicles in future 

stages. Finally, the monitored vehicles’ categorization process is explained.   

A. Security Game  

We consider two main players, which are the SC and the suspected vehicle (detected by IDS as intruder). The players carry out a 

set of actions to maximize their payoffs. We note that, in game theory concept, the players are rational and want to maximize their 

own payoff [25]. The SC player carries out one of these actions: prevent or wait. We note that in prevent action, the SC 

categorizes the suspected vehicle in one of the following lists: Yellow, Red and Black (see subsection IV.C). Furthermore, the 

vehicle player carries out one of these actions: attack or wait. 

In this game, the time is divided into a set of stages and at each stage there are a series of game interactions between the vehicle 

and the SC. Different strategies between them are defined and based on Nash equilibrium the future misbehavior of a malicious 

vehicle is determined. In this study, we present two states: (i) Transitory state: the attacker oscillates between a well and badly 

behaving node and (ii) Permanent state: the attacker behaves persistently bad, i.e. does not switch to a well behaved node, which 

represents the worst case.  Table I illustrates the payoff matrix of our security game.   

Table I. Matrix game: payoff 

( ) ( ) 

( ) ( ) 

Some notations are defined in Table II; 

Table II. Game theory notations 

p Probability that the SC carries out a prevent action 

q Probability that the vehicle carries out an attack action 

(1-p) Probability that the SC carries out a wait action. 

(1-q) Probabilities that the vehicle carries out a wait action. 

 

Number of malicious vehicles  that   does not suspect, i.e. 

false negative rate. 

 Number of normal vehicles  that are suspected by as 

attacker, i.e. false positive rate. 

Number of attackers  that  suspects. 

Cost Overhead rate that SC requires for preventing the attacker to 

occur, i.e. classify the target vehicle into a suitable list. 

= )-(Cost+ ), 

– +Cost), 

 Attack 

 Prevent 

 Wait 

 q  1-q 

 SC 
 p 

 Suspected 
Vehicle 

 1-p 

 Wait 
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By observing, the SC computes the belief function  based on the behavior of a monitored vehicle by using the

following equation [26]:  

  =

where,  >0 and is the probability that an attacker  observed at this stage of game given the type  (normal

or malicious behavior), which is equal either to q or 1-q depending on the attacker’s behavior (i.e. malicious or normal). 

K={1...n}, where n is the maximum number of stages that should be defined to predict with a high accuracy rate the future 

misbehavior of a malicious vehicle. See Table III on how to determine n.  

In the following, we describe the set of strategies between the monitored vehicles and SC. Afterward, based on these strategies, 

we determine the optimal solution for which the malicious vehicle and SC do not change their actions in the future stage. This 

optimal solution defined as NE, which is a worst case since the malicious vehicle remains in a permanent sate : 

• Strategy combination (Prevent, Attack): In this strategy, the malicious vehicle plays an attack action and the SC detects and

categorizes this attacker into a selected list. In this case, the SC player's payoff that is equal to  depends on detection rate

that SC exhibits, the number of attackers that SC does not detect and the cost to detect and categorize  in an appropriate

list. The vehicle player's payoff is equal to  which depends on the rate of misdetection by SC and detection rate that SC

exhibits,

• Strategy combination (Prevent, Wait): In this strategy, the SC detects a monitored vehicle  as an attacker while it does not

exhibit any attack. Therefore, SC player's payoff, which is equal to , decreases. In addition, the cost caused by detection

and categorization process also decreases SC player's payoff. The vehicle player's payoff is equal to , which increases

when the SC wrongly accuses the normal vehicle as an attacker,

• Strategy combination (Wait, Attack): In this strategy the malicious vehicle attacks and the SC switches to a wait action. In

this case, when a vehicle  performs an attack, vehicle player's payoff increases, which is equal to . In other side, the SC

player’s payoff decreases when a vehicle  carries out an attack, which is equal to ,

• Strategy combination (Wait, Wait): In this strategy, both SC and the monitored vehicle don’t perform a Prevent and attacks

actions, respectively. Therefore, the payoff of both players is equal to zero.

B. Misbehavior's prediction solution  

NE is a concept used in a game theory to study the interaction between the players and define a stability between them [25]. In 

this section, we determine the NE solution in which both SC and malicious vehicle do not change their actions. This solution is 

defined as a permanent state of an attacker which is a worst case since it does not switch to a normal behavior.  

(3)
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Theorem 1 There is at least one NE solution {  player (prevent, p*), } in which the SC carries out 

a prevention action and the misbehaving vehicle behaves persistently bad (i.e. dost not switch to a normal behavior) when the 

probabilities p < p* and q > q*, respectively.  

Proof  

The SC expected payoff function is defined as follow: 

 

         

The purpose of SC is to maximize its payoff by choosing an appropriate value of q* to prevent the malicious vehicle to persist to 

attack in the future stage. This solution ensures an equilibrium, which is defined as follow:   

(p*, q*)> (p, q*) 

The SC determines the optimal probability q* by calculating the first derivative of  with respect to p* and setting it to zero, 

which is equal to the following equation: 

q  

and , 

On the other hand, the malicious vehicle v expected payoff function is defined as follow: 

+  

 

The purpose of malicious vehicle is to maximize its payoff by choosing an appropriate value of p* to attack a maximum number 

of legitimate vehicles without being detected. This solution ensures an equilibrium, which is defined as follow: 

(p*, q*)> (p*, q) 

The attacker determines the optimal probability p* that leads a malicious vehicle to persist an attack by calculating the first 

derivative of  with respect to q* to zero. Thus, we have 

p < , where   , 

and  

As a result, we conclude that when the attack's probability of a malicious vehicle is above q* and the prevention's probability of 

SC is lower than p*, both players do not change their actions. Therefore, an equilibrium is reached defined as NE solution. In this 

 (6) 

(4)

 (5) 
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case, this malicious vehicle behaves persistently bad (i.e. does not switch to a normal behavior) and hence it will be stored in a 

Black list as shown in Table IV.  

As explained in subsection IV.A,  depends on the number of stages n that SC should respect. As shown in Table III, we vary n 

and the number of vehicles, and then compute the accuracy prediction rate (see section V about this metric).  According to our 

simulation results illustrated in this table, n depends mainly on the number of vehicles within a network since in a scaling mode 

(in our case 300 vehicles) n should be increased to get a high accuracy prediction. This is due to the fact that the belief of SC 

toward the monitored vehicle, depends on the number of interactions of this target vehicle with other vehicles during certain 

stages. 

Table III. Number of stages vs. intrusion prediction stages 

Number of vehicles Number of stages (n) Accuracy prediction rate 

100 15 100

200 20 98

350 23 94.5

The SC computes at each stage a belief function , see equation 3, and when the equilibrium is reached i.e. p < and q >  , 

the  suspected vehicle is detected as a node that persists to attack, i.e. does not switch to a normal behavior.   

B. Vehicles' classification  
The behavior of a vehicle could oscillate between a legitimate and malicious behavior during its lifetime. Thereby, it is not wise 

to eject the monitored vehicle directly when it launches a malicious anomaly [7]. Therefore, to reduce the false positive and false 

negative, the SC classifies the monitored vehicle into the appropriate list as shown in Table IV.  

Table IV. Monitored vehicle's classification  

List Behavior Threshold

Green 
The vehicle exhibits a normal behavior during its passage through the network 

AP = 0 

Yellow The behavior of a vehicle varies between a well and badly behaved node. 
However, in the future stages the switching rate to a normal node is more than to 
a misbehavior node. 

q'*   AP  <q''* 

Red The behavior of a vehicle varies between a well and badly behaved node. 
However, in the future stages the switching rate to a normal node is less than to a 
misbehavior node. 

AP  > q''* 

Black The behavior of a vehicle varies between a well and badly behaved node. 
However, in the future stages it does not switch to normal behavior i.e. 
Permanent state (worst case). 

Here, AP converges to 1. 

In other words, AP>q* (Nash 

equilibrium) 

Here, q*> q''* > q'*. q* is computed by using the formula of NE, see equation 5. The probabilities q'* and q''* that achieve a high 

level of security is analyzed in our experiment, see section II.B.  
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It’s noted that, the suspected vehicles that are in a Yellow and Red lists are limited on their participation on the network. The 

vehicles in Yellow list do not have the right to disseminate the alert messages (i.e. PCN) and the vehicles in Red list do not have 

the right to play an IDA agent role and dissemination of alert messages. However, when they persist to launch their IDA agents 

and broadcast these alerts messages, their AP will be increased. Furthermore, the vehicles that are stored in a Black list will be 

ejected from the network, in other words these misbehavior vehicles do not have the cryptography keys to communication with 

other vehicles).  

The SC informs the legitimate vehicles about the identities of the malicious vehicles (i.e. stored in Green, Yellow, Red and Black 

lists). To decrease the communication overhead, the SC filters these lists and forwards a fraction of it to the RSU or eNodeB that 

has a probability to pass within its radio range. This fraction of malicious vehicles is selected according to a mobility-perdition 

mechanism [27].  

V. PERFORMANCE EVALUATION 
The proposed intrusion detection and prediction scheme was implemented in NS3 simulator [28]. In this section, we first study 

the optimal probabilities thresholds q'* and q''* that satisfy the security requirement, i.e. accuracy prediction. After that, we 

compare the performances of our scheme with current prevention and detection frameworks proposed for HetVNet and VANET, 

namely: IDFV [5], DCMD [7], SLAID [9] and IPDS [14] frameworks. Here, we evaluate the accuracy prediction rate (i.e. 

prediction rate and number of false positive). Furthermore, the required time that these schemes exhibit to detect the attackers and 

the generated communication overhead are also evaluated. These metrics are defined as follow: 

• Accuracy Prediction Rate (APR), which is equal to prediction rate (PR) – false positive rate (FPR). Where PR is the rate of

attacks’ prediction. The number of legitimate nodes that are classified into the inappropriate lists (i.e. Yellow, Red or Black)

is defined as FPR,

• Detection Time (DT), which is the required time to identify the misbehaving vehicles [5].

Where  is the detection time of the attacker,  is the time when the attack started and s is the number of attackers. This 

metric is important, specifically in real-time applications since it allows evaluating the performances of our intrusion 

prediction scheme in terms of fast attack detection, 

• Communication Overhead, measures the number of bytes that vehicles generate to achieve a high security level.

A. Mobility model & simulation parameters  

In our simulation, we use a Manhattan Grid area of size 3000×3000m² generated by the Simulation of Urban Mobility (SUMO) 

simulator [29]. This latter generates also a mobility trace that was used as an input to NS-3. The number of attackers varies from 

10% to 40% of overall vehicles. In our simulation, we inject three types of malicious vehicles stored in Yellow, Red and Black 

lists, respectively. The main simulation parameters are summarized in Table V. These parameters were chosen to be as closely 

realistic as possible. 

 (7) 
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Table V. Simulation parameters 

Simulation area  

Simulation time 250 seconds

802.11p maximum range 400 meters

Number of vehicles From 50 to 300

Velocity 80 to 150 km/h, step 20

Monitoring period ( ) 4 seconds

Propagation model Two ray ground 

Mobility generator SUMO

Maximum number of 
attackers 

40%  of overall vehicles

B. Results and discussion 
In this subsection, we summarize the main results of our approach. First of all, we determine the optimal probabilities q’* and 

q’’* that achieve a high level of security, i.e. high accuracy prediction rate. Afterward, we compare the performance of our 

scheme with current intrusion detection and prevention frameworks in term of accuracy prediction rate, detection time and 

communication overhead.  

1) Optimal values of q’* and q’’*

In this subsection, we study the optimal values of q’* (probability that classifies malicious vehicles into a Yellow list) and q''* 

(probability that classifies malicious vehicles into a Red list) that allow us to achieve a dilemma between a high prediction rate 

and low number of false positive. The optimal values of these probabilities are modeled as follow:   

q'*=q*    

q''* = q*       

As shown in Fig.4, we varied   and  values and computed afterward the accuracy prediction rate (APR). Here, the number of 

malicious vehicles vary from 10%, 20% to 40% of overall vehicles, and the number of vehicles is fixed to 250 nodes. The optimal 

probabilities thresholds q'* and q''* that allow a high APR are selected. In the following, we summarize our main results:   

Fig.4 highlights the accuracy prediction rate when  and  values increase.  It’s noted that q* is determined by using NE 

solution, see equation 5. According to Fig.4, we found that the optimal values of  and  that make a tradeoff between detection 

(prediction) and false positive rates depend mainly on the number of attackers that occur in the network. In fact, when the number 

of malicious vehicles is equal to 10%, 20% and 40% of overall vehicles, the optimal values of    and   that allow a high APR 

(close to 97%) are equal to (0.42, 0.28), (0.45, 0.29) and (0.57, 0.36), respectively. Furthermore, when the number of attackers 

increases, the APR decreases. This is due to the fact that the number of trusted vehicles and IDS agents are reduced.  

 (8) 
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(a) 

(b) 

 (c) 

Fig.4 Optimal probability thresholds with a number of attackers equal to (a) 10%, (b) 20% and (c) 40 % of overall vehicles. 

In the following, the proposed prediction scheme is compared to some recent detection and prevention frameworks by computing 

accuracy prediction rate, detection time and communication overhead. In this study, we investigate the effect of scaling mode, i.e. 

varying the number of nodes from 50 to 300 nodes. It’s noted that, the number of attackers is set to 40% of overall vehicles, 

where the values of parameters  and  are equal to 0.57 and 0.36, respectively.  
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2) Performance comparison
In this subsection, we compare the performance of the proposed scheme with IDFV, DCMD, SLAID and IPDS in terms of 

accuracy prediction, detection time and communication overhead required to achieve a high level of security. Here, the number of 

vehicles varies from 50 to 300 nodes. As cited above, the optimal probabilities thresholds used are ( (q'*) = 0,57 and (q''*) 

=0,36). Hereafter, we summarize the most important results: 

a) Attack prediction and False positive. As shwon in Fig. 5(a), when the number of vehicles increases our scheme exhibits a high

attack prediction and generates a low false positive compared to the current detection and prevention schemes IDFV, DCMD, 

SLAID and IPDS. We show also that IDFV, DCMD and SLAID have not the capability to predict the future misbehavior of a 

malicious vehicle since their prediction rates and false positive rates decrease and increase, respectively. Furthermore, IPDS 

generates a high false positive rate due to the noise and incorrect observations. As a result, we can claim that by using Nash 

equilibrium concept, our intrusion detection and prediction scheme can predict the future misbehavior of an attacker, even when 

the number of vehicles and attackers increase. This result is achieved thanks to the Nash Equilibrium concept that models the 

behavior of vehicles in future stages based on early ones, which lead to an increase on the detection rate and the decrease on the 

false positive rate. This is unlike IDFV, DCMD and SLAID frameworks, where there is no intrusion prediction technique. 

b) Detection time. Fig.5 (b) presents the detection time of each intrusion detection (and prevention) framework. As shown, when

the number of nodes is high, the required time to identify a malicious vehicle and to categorize it in the appropriate list for each 

framework increases. However, according to Fig.5 (b), we can easily observe that our proposal and IDFV require a shorter time 

compared to DCMD and SLAID, specifically when the number of vehicles is important. Hence, we can claim that our intrusion 

prediction scheme could be used in delay-sensitive applications [5]. This improvement is attributed to the following reasons: (i) 

Optimal number of IDA agents. We activate an optimal number of intrusion detection agents that have the ability to monitor and 

report any misbehavior to the RSU or eNodeB in a short time. (ii) Lightweight intrusion detection and prediction. At vehicles 

level, we use a certain detection rules to identify a misbehavior, unlike SLAID that applies an anomaly detection based on a 

learning algorithm, which requires a considerable amount of time to model an abnormal behavior as proved in [4 ][30]. Moreover, 

to reduce the detection time, our misbehavior's prediction based on game theory is embedded in a powerful node, the SC. 

c) Communication overhead. Fig.5 (c) illustrates the communication overhead required to achieve a high security level. We found

out that our scheme, DCMD and IPDS generate a low overhead (between 4.5 and 15 KBytes) compared to IDFV and SLAID. 

This result is achieved even in a scaling mode and when the number of attackers is high. This improvement is due to the fact that 

our scheme relies on a policy that minimizes the amount of information disseminated by the SC to the vehicles through RSU and 

eNodeB. 
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Fig.5. Performance comparison: (a) Accuracy prediction detection, (b) Detection time and (c) Communication overhead. 

VI. CONCLUSION

Security in HetVNet is a challenging issue, due to the vital exchanged information [31]. In this paper, we propose and design a 

new attacks detection and prediction scheme for HetVNet. Our scheme relies on a Nash equilibrium concept to detect and 

specifically predict the future misbehavior of an attacker. The aim in this work is to prevent the occurrence of the most dangerous 

attacks that target HetVNet. Therefore, detection rules are proposed to model the normal behavior of the vehicles. We have 

analyzed the performances and demonstrated the efficiency of our proposed scheme using NS-3, and showed that it outperforms 

other detection and prevention frameworks proposed in the current literature in terms of security requirements and overhead since 

it exhibits a high accuracy prediction rate, low detection time and a low communication overhead. This result is achieved even in 

a worst case (the number of vehicles equal to 300).   
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