L. Chang, P. C. Yuen, and G. Qiu, Object motion detection using information theoretic spatio-temporal saliency, Pattern Recogn, pp.42-2897, 2009.

R. Achanta, F. Estrada, S. Susstrunk, and S. Hemami, Frequency-tuned salient region detection, Computer Vision and Pattern Recognition, pp.1597-1604, 2009.

C. Siagian and L. Itti, Biologically Inspired Mobile Robot Vision Localization, IEEE Transactions on Robotics, vol.25, issue.4, pp.861-873, 2009.
DOI : 10.1109/TRO.2009.2022424

T. Yubing, F. A. Cheikh, F. F. Guraya, H. Konik, and A. Trmeau, A Spatiotemporal Saliency Model for Video Surveillance, Cognitive Computation, vol.82, issue.1, pp.241-263, 2011.
DOI : 10.1007/s11263-009-0215-3

D. Sidibé, D. Fofi, and F. Mériaudeau, Using visual saliency for object tracking with particle filters, 2010.

T. Lu, Z. Yuan, Y. Huang, D. Wu, and H. Yu, Video retargeting with nonlinear spatial-temporal saliency fusion, 2010 IEEE International Conference on Image Processing, 2010.
DOI : 10.1109/ICIP.2010.5651644

C. L. Guo and L. M. Zhang, A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression, IEEE TIP, vol.19, issue.1, pp.185-198, 2010.

Y. Pinto, A. R. Van-der-leij, I. G. Sligte, V. A. Lamme, and H. S. Scholte, Bottom-up and top-down attention are independent, Journal of Vision, vol.13, issue.3, 2013.
DOI : 10.1167/13.3.16

S. Frintrop, Computational Visual Attention, 2011.
DOI : 10.1007/978-0-85729-994-9_4

A. Borji and L. Itti, State-of-the-Art in Visual Attention Modeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.1, pp.185-207, 2013.
DOI : 10.1109/TPAMI.2012.89

S. Marat, T. H. Phuoc, L. Granjon, N. Guyader, D. Pellerin et al., Guérin-Dugué, Modelling spatio-temporal saliency to predict gaze direction for short videos, IJCV, pp.82-231, 2009.

S. M. Muddamsetty, D. Sidibé, A. Trémeau, and F. Mériaudeau, A performance evaluation of fusion techniques for spatio-temporal saliency detection in dynamic scenes, 2013 IEEE International Conference on Image Processing, 2013.
DOI : 10.1109/ICIP.2013.6738808

URL : https://hal.archives-ouvertes.fr/hal-00835782

G. Zhao and M. Pietikäinen, Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.6, pp.915-928, 2007.
DOI : 10.1109/TPAMI.2007.1110

L. Ltti, C. Koch, and E. Neibur, A model of saliency-based visual attention for rapid scene analysis, IEEE Trans on Pattern Analysis and Machine Intelligence, vol.20, pp.1254-1259, 1998.

W. Kim, C. Jung, and C. Kim, Spatiotemporal Saliency Detection and Its Applications in Static and Dynamic Scenes, IEEE Transactions on Circuits and Systems for Video Technology, vol.21, issue.4, pp.446-456, 2011.
DOI : 10.1109/TCSVT.2011.2125450

B. Zhou, X. Hou, and L. Zhang, A Phase Discrepancy Analysis of Object Motion, InProceeding of the 10th Asian Confernce of Computer Vision, pp.225-238, 2011.
DOI : 10.1109/CVPR.2007.383267

H. J. Seo and P. Milanfar, Static and space-time visual saliency detection by self-resemblance, Journal of Vision, vol.9, issue.12
DOI : 10.1167/9.12.15

V. Mahadevan and N. Vasconcelos, Spatiotemporal Saliency in Dynamic Scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.1, pp.171-177, 2010.
DOI : 10.1109/TPAMI.2009.112

M. Mancas, N. Riche, J. Leroy, and B. Gosselin, Abnormal motion selection in crowds using bottom-up saliency, 2011 18th IEEE International Conference on Image Processing, pp.229-232
DOI : 10.1109/ICIP.2011.6116099

X. Hou and L. Zhang, Dynamic visual attention: searching for coding length increments, p.7, 2008.

L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, SUN: A Bayesian framework for saliency using natural statistics, Journal of Vision, vol.8, issue.7, 2008.
DOI : 10.1167/8.7.32

K. Fu, I. Y. Gu, Y. Yun, C. Gong, and J. Yang, Graph Construction for Salient Object Detection in Videos, 2014 22nd International Conference on Pattern Recognition, pp.2371-2376, 2014.
DOI : 10.1109/ICPR.2014.411

D. Chetverikov and R. Péteri, A Brief Survey of Dynamic Texture Description and Recognition, pp.17-26, 2005.
DOI : 10.1007/3-540-32390-2_2

C. Xu, D. Tao, and C. Xu, A survey on multi-view learning, arXiv preprint, pp.1304-5634, 2013.

C. Xu, D. Tao, and C. Xu, Multi-View Intact Space Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.12, pp.2531-2544, 2015.
DOI : 10.1109/TPAMI.2015.2417578

S. Sun, A survey of multi-view machine learning, Neural Computing and Applications, pp.2013-2038, 2013.
DOI : 10.1016/j.patcog.2010.04.004

S. Goferman and L. , Zelnik-manor, A. Tal, Context-aware saliency detection, IEEE CVPR, 2010.

A. Borji, M. M. Cheng, H. Jiang, and J. Li, Salient Object Detection: A Benchmark, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5706-5722, 2015.
DOI : 10.1109/TIP.2015.2487833

N. Riche, M. Mancas, D. Culibrk, V. Crnojevic, B. Gosselin et al., Dynamic Saliency Models and Human Attention: A Comparative Study on Videos, Computer Vision?ACCV 2012, pp.586-598, 2013.
DOI : 10.1007/978-3-642-37431-9_45

T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, vol.27, issue.8, pp.861-874, 2006.
DOI : 10.1016/j.patrec.2005.10.010

O. , L. Meur, and T. Baccino, Methods for comparing scanpaths and saliency maps: strengths and weaknesses, pp.251-266, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00757615

L. Zhang, M. H. Tong, and G. W. Cottrell, Sunday: Saliency using natural statistics for dynamic analysis of scenes, Proceedings of the 31st Annual Cognitive Science Conference, pp.2944-2949, 2009.