Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Automatic Biological Cell Counting Using a Modified Gradient Hough Transform

Abstract : We present a computational method for pseudo-circular object detection and quantitative characterization in digital images, using the gradient accumulation matrix as a basic tool. This Gradient Accumulation Transform (GAT) was first introduced in 1992 by Kierkegaard and recently used by Kaytanli & Valentine. In the present article, we modify the approach by using the phase coding studied by Cicconet, and by adding a local contributor list (LCL) as well as a used contributor matrix (UCM), which allow for accurate peak detection and exploitation. These changes help make the GAT algorithm a robust and precise method to automatically detect pseudo-circular objects in a microscopic image. We then present an application of the method to cell counting in microbiological images.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : PAM - université de Bourgogne Connectez-vous pour contacter le contributeur
Soumis le : mardi 18 avril 2017 - 17:26:19
Dernière modification le : dimanche 26 juin 2022 - 00:45:53



Emmanuel Denimal, Ambroise Marin, Stéphane Guyot, Ludovic Journaux, Paul Molin. Automatic Biological Cell Counting Using a Modified Gradient Hough Transform. Microscopy and Microanalysis, Cambridge University Press (CUP), 2017, 23 (01), pp.11 - 21. ⟨10.1017/S1431927616012617⟩. ⟨hal-01509941⟩



Consultations de la notice