Higher variational equation techniques for the integrability of homogeneous potentials

Abstract : We present several methods using higher variational equations to study the integrability of Hamiltonian systems from the algebraic and computational point of view. Through the Morales Ramis Simo theorem, strong integrability conditions can be computed for Hamiltonian systems, allowing us to prove nonintegrability even for potentials with parameters. This theorem can, in particular, be applied to potentials, even transcendental ones, by properly defining them on complex Riemann surfaces. In the even more particular case of homogeneous potentials, a complete computation of integrability conditions of variational equation near straight line orbits is possible at arbitrary order, allowing us to prove the nonintegrability of certain n-body problems which were inaccessible due to the complicated central configuration equation.
Type de document :
Chapitre d'ouvrage
Maitine Bergounioux; Gabriel Peyré; Christoph Schnörr; Jean-Baptiste Caillau; Thomas Haberkorn. Variational Methods In Imaging and Geometric Control, 18, De Gruyter, pp.365-386, 2017, Radon Series on Computational and Applied Mathematics 9783110430394. 〈10.1515/9783110430394-012〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01514112
Contributeur : Ub_drive Université de Bourgogne <>
Soumis le : mardi 25 avril 2017 - 16:46:32
Dernière modification le : vendredi 8 juin 2018 - 14:50:07

Identifiants

Collections

Citation

Thierry Combot. Higher variational equation techniques for the integrability of homogeneous potentials. Maitine Bergounioux; Gabriel Peyré; Christoph Schnörr; Jean-Baptiste Caillau; Thomas Haberkorn. Variational Methods In Imaging and Geometric Control, 18, De Gruyter, pp.365-386, 2017, Radon Series on Computational and Applied Mathematics 9783110430394. 〈10.1515/9783110430394-012〉. 〈hal-01514112〉

Partager

Métriques

Consultations de la notice

70