Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

Higher variational equation techniques for the integrability of homogeneous potentials

Abstract : We present several methods using higher variational equations to study the integrability of Hamiltonian systems from the algebraic and computational point of view. Through the Morales Ramis Simo theorem, strong integrability conditions can be computed for Hamiltonian systems, allowing us to prove nonintegrability even for potentials with parameters. This theorem can, in particular, be applied to potentials, even transcendental ones, by properly defining them on complex Riemann surfaces. In the even more particular case of homogeneous potentials, a complete computation of integrability conditions of variational equation near straight line orbits is possible at arbitrary order, allowing us to prove the nonintegrability of certain n-body problems which were inaccessible due to the complicated central configuration equation.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01514112
Contributeur : Ub_drive Université de Bourgogne Connectez-vous pour contacter le contributeur
Soumis le : jeudi 4 mars 2021 - 16:49:39
Dernière modification le : lundi 11 octobre 2021 - 10:04:10
Archivage à long terme le : : samedi 5 juin 2021 - 19:14:36

Fichier

combot2016.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Thierry Combot. Higher variational equation techniques for the integrability of homogeneous potentials. Maitine Bergounioux; Gabriel Peyré; Christoph Schnörr; Jean-Baptiste Caillau; Thomas Haberkorn. Variational Methods In Imaging and Geometric Control, 18, De Gruyter, pp.365-386, 2017, Radon Series on Computational and Applied Mathematics, 9783110430394. ⟨10.1515/9783110430394-012⟩. ⟨hal-01514112⟩

Partager

Métriques

Consultations de la notice

195

Téléchargements de fichiers

67