D. Ahr, J. Békési, G. Galambos, M. Oswald, and G. Reinelt, An exact algorithm for scheduling identical coupled tasks, Mathematical Methods of Operations Research (ZOR), vol.59, issue.2, pp.193-203, 2004.
DOI : 10.1007/s001860300328

J. Bla?-zewicz, K. Ecker, T. Kis, C. N. Potts, M. Tanas et al., Scheduling of coupled tasks with unit processing times, 2009.

A. Caprara, H. Kellerer, and U. Pferschy, A PTAS for the Multiple Subset Sum Problem with different knapsack capacities, Information Processing Letters, vol.73, issue.3-4, 2000.
DOI : 10.1016/S0020-0190(00)00010-7

A. Caprara, H. Kellerer, and U. Pferschy, The Multiple Subset Sum Problem, SIAM Journal on Optimization, vol.11, issue.2, pp.308-319, 2000.
DOI : 10.1137/S1052623498348481

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Caprara, H. Kellerer, and U. Pferschy, A 3/4-Approximation Algorithm for Multiple Subset Sum, Journal of Heuristics, vol.9, issue.2, pp.99-111, 2003.
DOI : 10.1023/A:1022584312032

M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi, Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions, Journal of Combinatorial Optimization, vol.4, issue.2, pp.171-186, 2000.
DOI : 10.1023/A:1009894503716

J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, vol.69, issue.1 and 2, pp.125-130, 1965.
DOI : 10.6028/jres.069B.013

M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness, 1979.

R. Giroudeau, J. König, F. K. Moula¨?moula¨?, and J. Palaysi, Complexity and approximation for the precedence constrained scheduling problem with large communication delays, Theoretical Computer Science, vol.401, pp.1-3107, 2008.
DOI : 10.1007/11549468_30

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete Mathematics, vol.5, pp.287-326, 1979.
DOI : 10.1016/S0167-5060(08)70356-X

O. H. Ibarra and C. E. Kim, Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems, Journal of the ACM, vol.22, issue.4, pp.463-468, 1975.
DOI : 10.1145/321906.321909

H. Kellerer, R. Mansini, U. Pferschy, and M. G. Speranza, An efficient fully polynomial approximation scheme for the Subset-Sum Problem, Journal of Computer and System Sciences, vol.66, issue.2, pp.349-370, 2003.
DOI : 10.1016/S0022-0000(03)00006-0

URL : http://doi.org/10.1016/s0022-0000(03)00006-0

H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.83-97, 1955.
DOI : 10.1002/nav.3800020109

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. J. Orman and C. N. Potts, On the complexity of coupled-task scheduling, Discrete Applied Mathematics, vol.72, issue.1-2, pp.141-154, 1997.
DOI : 10.1016/S0166-218X(96)00041-8

R. D. Shapiro, Scheduling coupled tasks, Naval Research Logistics Quarterly, vol.12, issue.3, pp.477-481, 1980.
DOI : 10.1002/nav.3800270312

G. Simonin, B. Darties, R. Giroudeau, and J. König, Isomorphic coupled-task scheduling problem with compatibility constraints on a single processor, Journal of Scheduling, vol.115, issue.2, pp.501-509, 2011.
DOI : 10.1007/s10951-010-0193-x

URL : https://hal.archives-ouvertes.fr/lirmm-00355050

G. Simonin, R. Giroudeau, and J. König, Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks, Project Management and Scheduling, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00488279

G. Simonin, R. Giroudeau, J. König, and B. Darties, Theoretical Aspects of Scheduling Coupled-Tasks in the Presence of Compatibility Graph, Algorithmic in Operations Research, vol.7, issue.1, pp.1-12, 2012.
URL : https://hal.archives-ouvertes.fr/lirmm-00715828