Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation

Abstract : We study numerically the evolution of perturbed Korteweg-de Vries solitons and of well localized initial data by the Novikov-Veselov (NV) equation at different levels of the 'energy' parameter E. We show that as |E| -> infinity, NV behaves, as expected, similarly to its formal limit, the Kadomtsev-Petviashvili equation. However at intermediate regimes, i.e. when |E| is not very large, more varied scenarios are possible, in particular, blow-ups are observed. The mechanism of the blow-up is studied.
Type de document :
Article dans une revue
Nonlinearity, IOP Publishing, 2017, 30 (7), pp.2566 - 2591. 〈10.1088/1361-6544/aa6f29〉
Liste complète des métadonnées

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01551757
Contributeur : Imb - Université de Bourgogne <>
Soumis le : vendredi 30 juin 2017 - 14:56:59
Dernière modification le : jeudi 11 janvier 2018 - 06:25:42

Identifiants

Collections

Citation

Anna Kazeykina, Christian Klein. Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation. Nonlinearity, IOP Publishing, 2017, 30 (7), pp.2566 - 2591. 〈10.1088/1361-6544/aa6f29〉. 〈hal-01551757〉

Partager

Métriques

Consultations de la notice

44